Probing the Dark Universe with Gravitational Waves
Abstract
:1. Introduction
2. Effective Speed of Arbitrary GW Polarization
3. Einstein Frame Definition
4. Gauge-Invariant Gravitational Waves
5. Gauge-Invariant Gravitational Waves Equation
6. Generalization to Higher Order in Perturbations
7. Effective Lagrangian and Metric
8. Jordan Frame Effective Action
9. Polarization and Frequency Dependency of the Luminosity Distance
10. Observational Implications
11. Possible Applications
12. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Application to Generic Theories
References
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Romano, A.E. Effective speed of gravitational waves. Phys. Lett. B 2024, 851, 138572. [Google Scholar] [CrossRef]
- Romano, A.E.; Sakellariadou, M. Mirage of luminal modified gravitational-wave propagation. Phys. Rev. Lett. 2023, 130, 231401. [Google Scholar] [CrossRef]
- Romano, A.E.; Vallejo Pena, S.A. The MESS of cosmological perturbations. Phys. Lett. B 2018, 784, 367–372. [Google Scholar] [CrossRef]
- Romano, A.E.; Vallejo-Peña, S.A. Gravitoelectromagnetic quadrirefringence. Phys. Dark Univ. 2023, 44, 101492. [Google Scholar] [CrossRef]
- Moretti, F.; Bombacigno, F.; Montani, G. Gravitational Landau damping for massive scalar modes. Eur. Phys. J. C 2020, 80, 1203. [Google Scholar] [CrossRef]
- Moretti, F.; Bombacigno, F.; Montani, G. The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas. Universe 2021, 7, 496. [Google Scholar] [CrossRef]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy in Light of Multi-Messenger Gravitational-Wave Astronomy. Front. Astron. Space Sci. 2018, 5, 44. [Google Scholar] [CrossRef]
- Bonvin, C.; Cusin, G.; Pitrou, C.; Mastrogiovanni, S.; Congedo, G.; Gair, J. Aberration of gravitational waveforms by peculiar velocity. Mon. Not. R. Astron. Soc. 2023, 525, 476. [Google Scholar] [CrossRef]
- Nishizawa, A. Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation. Phys. Rev. D 2018, 97, 104037. [Google Scholar] [CrossRef]
- Creminelli, P.; Gleyzes, J.; Noreña, J.; Vernizzi, F. Resilience of the standard predictions for primordial tensor modes. Phys. Rev. Lett. 2014, 113, 231301. [Google Scholar] [CrossRef] [PubMed]
- Gubitosi, G.; Piazza, F.; Vernizzi, F. The effective field theory of dark energy. J. Cosmol. Astropart. Phys. 2013, 2013, 032. [Google Scholar] [CrossRef]
- Lifshitz, E.M. On the gravitational stability of the expanding universe. Zh. Eksp. Teor. Phys. 1946, 16, 587. [Google Scholar]
- Kodama, H.; Sasaki, M. Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Baumann, D. Inflation. In Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small; World Scientific: Singapore, 2011; pp. 523–686. [Google Scholar]
- Flanagan, E.E.; Hughes, S.A. The basics of gravitational wave theory. New J. Phys. 2005, 7, 204. [Google Scholar] [CrossRef]
- Fanizza, G.; Gasperini, M.; Pavone, E.; Tedesco, L. Linearized propagation equations for metric fluctuations in a general (non-vacuum) background geometry. J. Cosmol. Astropart. Phys. 2021, 2021, 021. [Google Scholar] [CrossRef]
- Sciama, D.; Waylen, P.; Gilman, R. Generally covariant integral formulation of Einstein’s field equations. Phys. Rev. 1969, 187, 1762–1766. [Google Scholar]
- Mollerach, S.; Harari, D.; Matarrese, S. CMB polarization from secondary vector and tensor modes. Phys. Rev. D 2004, 69, 063002. [Google Scholar] [CrossRef]
- De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A. On the gauge invariance of cosmological gravitational waves. J. Cosmol. Astropart. Phys. 2020, 2023, 014. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, S.; Zhu, Q.-H. Gauge Invariant Second Order Gravitational Waves. arXiv 2020, arXiv:2009.11994. [Google Scholar]
- Romano, A.E. Effective speed of cosmological perturbations. Phys. Dark Univ. 2024, 45, 101549. [Google Scholar] [CrossRef]
- Weinberg, S. Damping of tensor modes in cosmology. Phys. Rev. D 2004, 69, 023503. [Google Scholar] [CrossRef]
- Mangilli, A.; Bartolo, N.; Matarrese, S.; Riotto, A. The impact of cosmic neutrinos on the gravitational-wave background. Phys. Rev. D 2008, 78, 083517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, A.E. Probing the Dark Universe with Gravitational Waves. Universe 2024, 10, 426. https://doi.org/10.3390/universe10110426
Romano AE. Probing the Dark Universe with Gravitational Waves. Universe. 2024; 10(11):426. https://doi.org/10.3390/universe10110426
Chicago/Turabian StyleRomano, Antonio Enea. 2024. "Probing the Dark Universe with Gravitational Waves" Universe 10, no. 11: 426. https://doi.org/10.3390/universe10110426
APA StyleRomano, A. E. (2024). Probing the Dark Universe with Gravitational Waves. Universe, 10(11), 426. https://doi.org/10.3390/universe10110426