Reanalysis of the MACHO Constraints on PBH in the Light of Gaia DR3 Data
Abstract
:1. Introduction
2. Results
2.1. Milky Way Rotation Curve
2.1.1. Bulge
2.1.2. Disk
2.1.3. Gas
2.1.4. Halo
2.1.5. Total
3. The Microlensing Optical Depth and Rate of Events
Microlensing Detection Efficiency
4. Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | We define the mass function as in Ref. [3], . |
References
- Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
- Chapline, G.F. Cosmological effects of primordial black holes. Nature 1975, 253, 251. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; Garcia-Bellido, J.; Hawkins, M.; Kuhnel, F. Observational evidence for primordial black holes: A positivist perspective. Phys. Rep. 2024, 1054, 1–68. [Google Scholar] [CrossRef]
- Bagui, E.; Clesse, S.; De Luca, V.; Ezquiaga, J.M.; Franciolini, G.; García-Bellido, J.; Joana, C.; Jain, R.K.; Kuroyanagi, S.; Musco, I.; et al. Primordial black holes and their gravitational-wave signatures. Living Rev. Relativ. (accepted) 2024, arXiv:2310.19857. [Google Scholar]
- Green, A.M. Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function. Phys. Rev. D 2016, 94, 063530. [Google Scholar] [CrossRef]
- Green, A.M. Astrophysical uncertainties on stellar microlensing constraints on multi-Solar mass primordial black hole dark matter. Phys. Rev. D 2017, 96, 043020. [Google Scholar] [CrossRef]
- Tyler, E.; Green, A.M.; Goodwin, S.P. Modelling uncertainties in wide binary constraints on primordial black holes. Mon. Not. R. Astron. Soc. 2023, 524, 3052. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way. Commun. Theor. Phys. 2018, 69, 233. [Google Scholar] [CrossRef]
- García-Bellido, J.; Linde, A.D.; Wands, D. Density perturbations and black hole formation in hybrid inflation. Phys. Rev. D 1996, 54, 6040. [Google Scholar] [CrossRef]
- Jedamzik, K. Primordial black hole formation during the QCD epoch. Phys. Rev. D 1997, 55, 5871. [Google Scholar] [CrossRef]
- Paczynski, B. Gravitational microlensing by the galactic halo. Astrophys. J. 1986, 304, 1. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Axelrod, T.S.; Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Griest, K.; Guern, J.A.; Lehner, M.J.; Marshall, S.L.; et al. The MACHO project first year LMC results: The Microlensing rate and the nature of the galactic dark halo. Astrophys. J. 1996, 461, 84. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; Freeman, K.C.; et al. The MACHO project: Microlensing results from 5.7 years of LMC observations. Astrophys. J. 2000, 542, 281. [Google Scholar] [CrossRef]
- Hawkins, M.R.S. A new look at microlensing limits on dark matter in the Galactic halo. Astron. Astrophys. 2015, 575, A107. [Google Scholar] [CrossRef]
- Tisserand, P.; Le Guillou, L.; Afonso, C.; Albert, J.N.; Andersen, J.; Ansari, R.; Aubourg, E.; Bareyre, P.; Beaulieu, J.P.; Charlot, X.; et al. Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astron. Astrophys. 2007, 469, 387. [Google Scholar] [CrossRef]
- Wyrzykowski, L.; Skowron, J.; Kozlowski, S.; Udalski, A.; Szymanski, M.K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Ulaczyk, K.; et al. The OGLE View of Microlensing towards the Magellanic Clouds. IV. OGLE-III SMC Data and Final Conclusions on MACHOs. Mon. Not. R. Astron. Soc. 2011, 416, 2949. [Google Scholar] [CrossRef]
- Clemens, D. Massachusetts-Stony Brook Galactic plane CO survey: The galactic disk rotation curve. Astrophys. J. 1985, 295, 422. [Google Scholar] [CrossRef]
- Xue, X.-X.; Rix, H.-W.; Zhao, G.; Fiorentin, P.R.; Naab, T.; Steinmetz, M.; van den Bosch, F.C.; Beers, T.C.; Lee, Y.S.; Bell, E.F.; et al. The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from Kinematics of ~2400 SDSS Blue Horizontal Branch Stars. Astrophys. J. 2008, 684, 1143. [Google Scholar] [CrossRef]
- Sofue, Y. Rotation Curve and Mass Distribution in the Galactic Center—From Black Hole to Entire Galaxy. Publ. Astron. Soc. Jap. 2013, 65, 118. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chaudhury, S.; Kundu, S. Rotation Curve of the Milky Way out to ∼200 kpc. Astrophys. J. 2014, 785, 63. [Google Scholar] [CrossRef]
- Calcino, J.; García-Bellido, J.; Davis, T.M. Updating the MACHO fraction of the Milky Way dark halo with improved mass models. Mon. Not. R. Astron. Soc. 2018, 479, 2889. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Yuan, H.; Xiang, M.; Zhang, H.; Chen, B.; Ren, J.; Wang, C.; Zhang, Y.; Hou, Y.; et al. The Milky Way’s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution. Mon. Not. R. Astron. Soc. 2016, 463, 2623. [Google Scholar] [CrossRef]
- Ou, X.; Eilers, A.C.; Necib, L.; Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. Mon. Not. R. Astron. Soc. 2024, 528, 693. [Google Scholar] [CrossRef]
- Jiao, Y.; Hammer, F.; Wang, H.; Wang, J.; Amram, P.; Chemin, L.; Yang, Y. Detection of the Keplerian decline in the Milky Way rotation curve. Astron. Astrophys. 2023, 678, A208. [Google Scholar] [CrossRef]
- Wang, H.F.; Chrobáková, Z.; López-Corredoira, M.; Sylos Labini, F. Mapping the Milky Way Disk with Gaia DR3: 3D Extended Kinematic Maps and Rotation Curve to 30 kpc. Astrophys. J. 2023, 942, 12. [Google Scholar] [CrossRef]
- Sylos Labini, F.; Chrobáková, Z.; Capuzzo-Dolcetta, R.; López-Corredoira, M. Mass Models of the Milky Way and Estimation of Its Mass from the Gaia DR3 Data Set. Astrophys. J. 2023, 945, 3. [Google Scholar] [CrossRef]
- Vallenari, A.; Brown, A.G.A.; Prusti, T.; de Bruijne, J.H.J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Ducourant, C.; Evans, D.W.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar]
- Hernquist, L. An Analytical Model for Spherical Galaxies and Bulges. Astrophys. J. 1990, 356, 359. [Google Scholar] [CrossRef]
- Einasto, J. Trudy Astrofiz . Inst. Alma-Ata 1965, 5, 87. [Google Scholar]
- Bennett, D.P. Large Magellanic Cloud microlensing optical depth with imperfect event selection. Astrophys. J. 2005, 633, 906. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; Freeman, K.C.; et al. The MACHO project Hubble Space Telescope follow-up: Preliminary results on the location of the large magellanic cloud microlensing source stars. Astrophys. J. 2001, 552, 582. [Google Scholar] [CrossRef]
- Byrnes, C.T.; Hindmarsh, M.; Young, S.; Hawkins, M.R.S. Primordial black holes with an accurate QCD equation of state. J. Cosmol. Astropart. Phys. 2018, 8, 041. [Google Scholar] [CrossRef]
- Refsdal, S.; Stabell, R. Gravitational micro-lensing for large sources. Astron. Astrophys. 1991, 250, 62. [Google Scholar]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Drake, A.J.; Freeman, K.C.; Geha, M.; et al. The MACHO project: Microlensing detection efficiency. Astrophys. J. Suppl. 2001, 136, 439. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; García-Bellido, J.; Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Univ. 2021, 31, 100755. [Google Scholar] [CrossRef]
- Mróz, P.; Udalski, A.; Szymanski, M.K.; Soszynski, I.; Wyrzykowski, L.; Pietrukowicz, P.; Kozlowski, S.; Poleski, R.; Skowron, J.; Skowron, D.; et al. No massive black holes in the Milky Way halo. Nature 2024, 632, 749. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Bellido, J.; Hawkins, M. Reanalysis of the MACHO Constraints on PBH in the Light of Gaia DR3 Data. Universe 2024, 10, 449. https://doi.org/10.3390/universe10120449
García-Bellido J, Hawkins M. Reanalysis of the MACHO Constraints on PBH in the Light of Gaia DR3 Data. Universe. 2024; 10(12):449. https://doi.org/10.3390/universe10120449
Chicago/Turabian StyleGarcía-Bellido, Juan, and Michael Hawkins. 2024. "Reanalysis of the MACHO Constraints on PBH in the Light of Gaia DR3 Data" Universe 10, no. 12: 449. https://doi.org/10.3390/universe10120449
APA StyleGarcía-Bellido, J., & Hawkins, M. (2024). Reanalysis of the MACHO Constraints on PBH in the Light of Gaia DR3 Data. Universe, 10(12), 449. https://doi.org/10.3390/universe10120449