Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of Three Hydrated Ferrous Sulfates
2.3. Instruments
2.3.1. X-Ray Powder Diffraction (XRD)
2.3.2. Raman Spectroscopy
2.3.3. Mid-Infrared (MIR) Spectroscopy
2.3.4. Visible Near-Infrared (VNIR) Spectroscopy
2.3.5. Laser-Induced Breakdown Spectroscopy (LIBS) MIR
3. Results
3.1. The Crystal Structure of Three Hydrated Ferrous Sulfates
3.2. XRD
3.3. Raman
3.4. MIR
3.5. VNIR
3.6. LIBS
4. Discussion and Implications for Mars
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Changela, H.G.; Chatzitheodoridis, E.; Antunes, A.; Beaty, D.; Bouw, K.; Bridges, J.C.; Capova, K.A.; Cockell, C.S.; Conley, C.A.; Dadachova, E. Mars: New Insights and Unresolved Questions. Int. J. Astrobiol. 2021, 20, 394–426. [Google Scholar] [CrossRef]
- Yen, A.S.; Gellert, R.; Schröder, C.; Morris, R.V.; Bell, J.F., III; Knudson, A.T.; Clark, B.C.; Ming, D.W.; Crisp, J.A.; Arvidson, R.E. An Integrated View of the Chemistry and Mineralogy of Martian Soils. Nature 2005, 436, 49–54. [Google Scholar] [CrossRef] [PubMed]
- McSween, H.Y., Jr. Petrology on Mars. Am. Mineral. 2015, 100, 2380–2395. [Google Scholar] [CrossRef]
- Chevrier, V.; Mathé, P.-E. Mineralogy and Evolution of the Surface of Mars: A Review. Planet. Space Sci. 2007, 55, 289–314. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Chipera, S.J. Transformations of Mg-and Ca-Sulfate Hydrates in Mars Regolith. Am. Mineral. 2006, 91, 1628–1642. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Bish, D.L.; Chipera, S.J.; Fialips, C.I.; William Carey, J.; Feldman, W.C. Magnesium Sulphate Salts and the History of Water on Mars. Nature 2004, 431, 663–665. [Google Scholar] [CrossRef]
- Chipera, S.J.; Vaniman, D.T.; Rampe, E.B.; Bristow, T.F.; Martínez, G.; Tu, V.M.; Peretyazhko, T.S.; Yen, A.S.; Gellert, R.; Berger, J.A. Mineralogical Investigation of Mg-Sulfate at the Canaima Drill Site, Gale Crater, Mars. J. Geophys. Res. Planets 2023, 128, e2023JE008041. [Google Scholar] [CrossRef]
- Rampe, E.B.; Bristow, T.F.; Morris, R.V.; Morrison, S.M.; Achilles, C.N.; Ming, D.W.; Vaniman, D.T.; Blake, D.F.; Tu, V.M.; Chipera, S.J. Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument. J. Geophys. Res. Planets 2020, 125, e2019JE006306. [Google Scholar] [CrossRef]
- Wang, A.; Ling, Z.C. Ferric Sulfates on Mars: A Combined Mission Data Analysis of Salty Soils at Gusev Crater and Laboratory Experimental Investigations. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Ling, Z.C.; Wang, A. A Systematic Spectroscopic Study of Eight Hydrous Ferric Sulfates Relevant to Mars. Icarus 2010, 209, 422–433. [Google Scholar] [CrossRef]
- Moore, R.D.; Szynkiewicz, A. Aqueous Sulfate Contributions in Terrestrial Basaltic Catchments: Implications for Understanding Sulfate Sources and Transport in Meridiani Planum, Mars. Icarus 2023, 391, 115342. [Google Scholar] [CrossRef]
- Yen, A.S.; Ming, D.W.; Vaniman, D.T.; Gellert, R.; Blake, D.F.; Morris, R.V.; Morrison, S.M.; Bristow, T.F.; Chipera, S.J.; Edgett, K.S.; et al. Multiple Stages of Aqueous Alteration along Fractures in Mudstone and Sandstone Strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 186–198. [Google Scholar] [CrossRef]
- Sun, V.Z.; Hand, K.P.; Stack, K.M.; Farley, K.A.; Simon, J.I.; Newman, C.; Sharma, S.; Liu, Y.; Wiens, R.C.; Williams, A.J. Overview and Results from the Mars 2020 Perseverance Rover’s First Science Campaign on the Jezero Crater Floor. J. Geophys. Res. Planets 2023, 128, e2022JE007613. [Google Scholar] [CrossRef]
- Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science 2005, 307, 1584–1586. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Martínez, G.M.; Rampe, E.B.; Bristow, T.F.; Blake, D.F.; Yen, A.S.; Ming, D.W.; Rapin, W.; Meslin, P.-Y.; Morookian, J.M.; et al. Gypsum, Bassanite, and Anhydrite at Gale Crater, Mars. Am. Mineral. 2018, 103, 1011–1020. [Google Scholar] [CrossRef]
- Nachon, M.; Clegg, S.M.; Mangold, N.; Schröder, S.; Kah, L.C.; Dromart, G.; Ollila, A.; Johnson, J.R.; Oehler, D.Z.; Bridges, J.C.; et al. Calcium Sulfate Veins Characterized by ChemCam/Curiosity at Gale Crater, Mars. J. Geophys. Res. Planets 2014, 119, 1991–2016. [Google Scholar] [CrossRef]
- Rapin, W.; Ehlmann, B.L.; Dromart, G.; Schieber, J.; Thomas, N.H.; Fischer, W.W.; Fox, V.K.; Stein, N.T.; Nachon, M.; Clark, B.C.; et al. An Interval of High Salinity in Ancient Gale Crater Lake on Mars. Nat. Geosci. 2019, 12, 889–895. [Google Scholar] [CrossRef]
- Wang, A.; Jolliff, B.L.; Liu, Y.; Connor, K. Setting Constraints on the Nature and Origin of the Two Major Hydrous Sulfates on Mars: Monohydrated and Polyhydrated Sulfates. J. Geophys. Res. Planets 2016, 121, 678–694. [Google Scholar] [CrossRef]
- Smith, R.J.; McLennan, S.M.; Sutter, B.; Rampe, E.B.; Dehouck, E.; Siebach, K.L.; Horgan, B.H.N.; Sun, V.; McAdam, A.; Mangold, N. X-Ray Amorphous Sulfur-Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. J. Geophys. Res. Planets 2022, 127, e2021JE007128. [Google Scholar] [CrossRef]
- Zolotov, M.Y.; Shock, E.L. Formation of Jarosite-bearing Deposits through Aqueous Oxidation of Pyrite at Meridiani Planum, Mars. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Lichtenberg, K.A.; Arvidson, R.E.; Morris, R.V.; Murchie, S.L.; Bishop, J.L.; Fernandez Remolar, D.; Glotch, T.D.; Noe Dobrea, E.; Mustard, J.F.; Andrews-Hanna, J. Stratigraphy of Hydrated Sulfates in the Sedimentary Deposits of Aram Chaos, Mars. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Gyollai, I.; Chatzitheodoridis, E.; Kereszturi, Á.; Szabó, M. Multiple Generation Magmatic and Hydrothermal Processes in a Martian Subvolcanic Environment Based on the Analysis of Yamato-000593 Nakhlite Meteorite. Meteorit. Planet. Sci. 2023, 58, 218–240. [Google Scholar] [CrossRef]
- Hu, S.; Lin, Y.; Zhang, J.; Hao, J.; Yamaguchi, A.; Zhang, T.; Yang, W.; Changela, H. Volatiles in the Martian Crust and Mantle: Clues from the NWA 6162 Shergottite. Earth Planet. Sci. Lett. 2020, 530, 115902. [Google Scholar] [CrossRef]
- Gyollai, I.; Kereszturi, A.; Chatzitheodoridis, E. Analysis of Altered Mineral Phases in Yamato 593 Martian Meteorite. In Proceedings of the 47th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 1911. [Google Scholar]
- LI, W. Some Characteristics of the Oxidation Zone of Sulfide Ore Deposits in Lower Yangtze Area, Southeast China. Min. Geol. 1983, 33, 137–147. [Google Scholar]
- Vigânico, E.M.; Colling, A.V.; de Almeida Silva, R.; Schneider, I.A.H. Biohydrometallurgical/UV Production of Ferrous Sulphate Heptahydrate Crystals from Pyrite Present in Coal Tailings. Miner. Eng. 2011, 24, 1146–1148. [Google Scholar] [CrossRef]
- Bishop, J.L.; Parente, M.; Weitz, C.M.; Noe Dobrea, E.Z.; Roach, L.H.; Murchie, S.L.; McGuire, P.C.; McKeown, N.K.; Rossi, C.M.; Brown, A.J.; et al. Mineralogy of Juventae Chasma: Sulfates in the Light-Toned Mounds, Mafic Minerals in the Bedrock, and Hydrated Silica and Hydroxylated Ferric Sulfate on the Plateau. J. Geophys. Res. E Planets 2009, 114, 1–23. [Google Scholar] [CrossRef]
- Pitman, K.M.; Dobrea, E.Z.N.; Jamieson, C.S.; Dalton, J.B.; Abbey, W.J.; Joseph, E.C.S. What Lurks in the Martian Rocks and Soil Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance Spectroscopy and Optical Functions for Hydrated Fe-Sulfates. Am. Mineral. 2014, 99, 1593–1603. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.; Mangold, N.; Murchie, S. Hydrous Minerals on Mars as Seen by the CRISM and OMEGA Imaging Spectrometers: Updated Global View. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Leask, E.K.; Ehlmann, B.L.; Dundar, M.M. A 2-billion-year History of Water-alteration in Terra Sirenum, Mars: Volcanism’s Influence on Aluminum Clay Formation and Chemically Distinct Waters Forming Sulfates and Chlorides into the Amazonian. J. Geophys. Res. Planets 2024, 129, e2023JE008259. [Google Scholar] [CrossRef]
- Kereszturi, A. Review of Wet Environment Types on Mars with Focus on Duration and Volumetric Issues. Astrobiology 2012, 12, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Giester, G.; Lengauer, C.L.; Redhammer, G.J. Characterization of the FeSO4. H2O-CuSO4. H2O Solid-Solution Series, and the Nature of Poitevinite, (Cu, Fe)SO4. H2O. Can. Mineral. 1994, 32, 873–884. [Google Scholar]
- Baur, W.H. Zur Kristallchemie Der Salzhydrate. Die Kristallstrukturen von MgSO4·4H2O (Leonhardtit) Und FeSO4·4H2O (Rozenit). Acta Crystallogr. 1962, 15, 815–826. [Google Scholar] [CrossRef]
- Peterson, R.C. The Relationship between Cu Content and Distortion in the Atomic Structure of Melanterite from the Richmond Mine, Iron Mountain, California. Can. Mineral. 2003, 41, 937–949. [Google Scholar] [CrossRef]
- Fronczek, F.R.; Collins, S.N.; Chan, J.Y. Refinement of Ferrous Sulfate Heptahydrate (Melanterite) with Low-Temperature CCD Data. Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, i26–i27. [Google Scholar] [CrossRef]
- Baur, W.H. On the Crystal Chemistry of Salt Hydrates. III. The Determination of the Crystal Structure of FeSO4.7H2O (Melanterite). Acta Crystallogr. 1964, 17, 1167–1174. [Google Scholar] [CrossRef]
- Kazuo, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons: New York, NY, USA, 1986; Volume 1, pp. 226–978. [Google Scholar]
- Cloutis, E.A.; Hawthorne, F.C.; Mertzman, S.A.; Krenn, K.; Craig, M.A.; Marcino, D.; Methot, M.; Strong, J.; Mustard, J.F.; Blaney, D.L. Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy. Icarus 2006, 184, 121–157. [Google Scholar] [CrossRef]
- Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.M.; Mars, J.C. Spectral Reflectance Properties (0.4–2.5 Μm) of Secondary Fe-Oxide, Fe-Hydroxide, and Fe-Sulphate-Hydrate Minerals Associated with Sulphide-Bearing Mine Wastes. Geochem. Explor. Environ. Anal. 2003, 3, 219–228. [Google Scholar] [CrossRef]
- Lane, M.D.; Bishop, J.L.; Darby Dyar, M.; Hiroi, T.; Mertzman, S.A.; Bish, D.L.; King, P.L.; Deanne Rogers, A. Mid-Infrared Emission Spectroscopy and Visible/near-Infrared Reflectance Spectroscopy of Fe-Sulfate Minerals. Am. Mineral. 2015, 100, 66–82. [Google Scholar] [CrossRef]
- Perkins, J.J.; Sharma, S.K.; Clegg, S.M.; Misra, A.K.; Wiens, R.C.; Barefield, J.E. Remote Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Hydrated Sulfates. In Proceedings of the 40th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 23–27 March 2009. [Google Scholar]
- Meng, F.; Shi, E.; Liu, C.; Ling, Z. Quantification of H2O in Amorphous and Crystalline Ferric Sulfates Relevant to Mars. J. Geophys. Res. Planets 2024, 129, e2023JE008091. [Google Scholar] [CrossRef]
- Murchie, S.L.; Seelos, F.P.; Hash, C.D.; Humm, D.C.; Malaret, E.; McGovern, J.A.; Choo, T.H.; Seelos, K.D.; Buczkowski, D.L.; Morgan, M.F. Compact Reconnaissance Imaging Spectrometer for Mars Investigation and Data Set from the Mars Reconnaissance Orbiter’s Primary Science Phase. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Bibring, J.-P.; Langevin, Y.; Mustard, J.F.; Poulet, F.; Arvidson, R.; Gendrin, A.; Gondet, B.; Mangold, N.; Pinet, P.; Forget, F. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science 2006, 312, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.; Vaniman, D.; Achilles, C.; Anderson, R.; Bish, D.; Bristow, T.; Chen, C.; Chipera, S.; Crisp, J.; Des Marais, D. Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory. Space Sci. Rev. 2012, 170, 341–399. [Google Scholar] [CrossRef]
- Rull, F.; Maurice, S.; Hutchinson, I.; Moral, A.; Perez, C.; Diaz, C.; Colombo, M.; Belenguer, T.; Lopez-Reyes, G.; Sansano, A. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars. Astrobiology 2017, 17, 627–654. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Bell, J.F., III; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science 2003, 300, 2056–2061. [Google Scholar] [CrossRef]
- Kereszturi, A.; Bradák, B.; Chatzitheodoridis, E.; Ujvari, G. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills. Orig. Life Evol. Biosph. 2016, 46, 435–454. [Google Scholar] [CrossRef]
- Connell, S.A.; Wiens, R.C.; Cardarelli, E.L.; Deen, R.; Mandon, L.; Sharma, S.; Beyssac, O.; Clavé, E.; Siljeström, S.; Czaja, A.I. Analysis of Co-Located Supercam and Sherloc Observations on Abrasion Patches in Jezero Crater. In Proceedings of the 54th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 13–17 March 2023; Volume 54, p. 1826. [Google Scholar]
- Baldridge, A.M.; Lane, M.D.; Edwards, C.S. Searching at the Right Time of Day: Evidence for Aqueous Minerals in Columbus Crater with TES and THEMIS Data. J. Geophys. Res. Planets 2013, 118, 179–189. [Google Scholar] [CrossRef]
- L’Haridon, J.; Mangold, N.; Meslin, P.Y.; Johnson, J.R.; Rapin, W.; Forni, O.; Cousin, A.; Payré, V.; Dehouck, E.; Nachon, M.; et al. Chemical Variability in Mineralized Veins Observed by ChemCam on the Lower Slopes of Mount Sharp in Gale Crater, Mars. Icarus 2018, 311, 69–86. [Google Scholar] [CrossRef]
- Rapin, W.; Meslin, P.Y.; Maurice, S.; Vaniman, D.; Nachon, M.; Mangold, N.; Schröder, S.; Gasnault, O.; Forni, O.; Wiens, R.C.; et al. Hydration State of Calcium Sulfates in Gale Crater, Mars: Identification of Bassanite Veins. Earth Planet. Sci. Lett. 2016, 452, 197–205. [Google Scholar] [CrossRef]
- Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R.C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.Y.; Lasue, J.; et al. Alkali Trace Elements in Gale Crater, Mars, with ChemCam: Calibration Update and Geological Implications. J. Geophys. Res. Planets 2017, 122, 650–679. [Google Scholar] [CrossRef]
- Clavé, E.; Benzerara, K.; Meslin, P.; Forni, O.; Royer, C.; Mandon, L.; Beck, P.; Quantin-Nataf, C.; Beyssac, O.; Cousin, A. Carbonate Detection with SuperCam in Igneous Rocks on the Floor of Jezero Crater, Mars. J. Geophys. Res. Planets 2023, 128, e2022JE007463. [Google Scholar] [CrossRef]
- Matei, E.; Predescu, A.M.; Șăulean, A.A.; Râpă, M.; Sohaciu, M.G.; Coman, G.; Berbecaru, A.-C.; Predescu, C.; Vâju, D.; Vlad, G. Ferrous Industrial Wastes—Valuable Resources for Water and Wastewater Decontamination. Int. J. Environ. Res. Public. Health 2022, 19, 13951. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.G.; Burton, E.D.; Aaso, T.; Tuckerman, G. Sulfur, Iron and Carbon Cycling Following Hydrological Restoration of Acidic Freshwater Wetlands. Chem. Geol. 2014, 371, 9–26. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Iron and Sulfur Cycling in Acid Sulfate Soil Wetlands under Dynamic Redox Conditions: A Review. Chemosphere 2018, 197, 803–816. [Google Scholar] [CrossRef]
- Karimi, M. Effect of Different Levels of Irrigation Water Quality and Ferrous Sulfate Fertilizer on Yield and Yield Components of Wheat (Triticum aestivum L.). Environ. Stress. Crop Sci. 2020, 12, fa1303–fa1312. [Google Scholar]
- Zhuo, X.A.; Zhang, R.Z.; Shi, E.B.; Ling, Z.C.; Liu, J.H. Raman, MIR, VNIR, and LIBS spectra of three hydrated ferrous sulfates and their implication for Mars. Figshare 2024, Dataset. [Google Scholar] [CrossRef]
Sample | H2O Mode | SO4 Mode | Others | ||||
---|---|---|---|---|---|---|---|
Stretching | Bending | ν1 | ν2 | ν3 | ν4 | Lattice-Vibration | |
FeSO4·H2O | 3242.8 | 1478.3 | 1017.2 | 421.9 | 1073.1 | 615.4 | 111.5 |
3334.5 | 1625.9 | 492.7 | 1091.4 | 622.3 | |||
3422.0 | 1750.0 | 1193.9 | 661.2 | ||||
FeSO4·4H2O | 3325.6 | 1591.2 | 989.7 | 457.0 | 1071.1 | 580.3 | 105.6 |
3378.2 | 1629.0 | 480.3 | 1096.1 | 606.7 | 148.1 | ||
3448.5 | 1679.8 | 1146.0 | 625.7 | 166.2 | |||
3530.9 | 1176.6 | 660.5 | |||||
3595.9 | |||||||
FeSO4·7H2O | 3228.9 | 1593.8 | 976.8 | 452.8 | 1069.5 | 608.9 | 141.1 |
3354.8 | 1649.5 | 460.5 | 1099.4 | 620.7 | 183.4 | ||
3438.8 | 1143.6 | 209.9 | |||||
3522.2 | 239.1 | ||||||
377.2 |
Sample | H2O Mode | SO4 Mode | ||||
---|---|---|---|---|---|---|
Stretching | Bending | ν1 | ν2 | ν3 | ν4 | |
FeSO4·H2O | 3233.8 | 1501.1 | 1015.6 | 524.4 | 1084.1 | 603.5 |
3372.6 | 1644.9 | 544.1 | 1134.3 | 625.1 | ||
1176.8 | 668.0 | |||||
FeSO4·4H2O | 3233.8 | 1596.1 | 987.2 | 425.1 | 1092.6 | 611.3 |
3372.6 | 1621.5 | 437.8 | 1156.0 | |||
3467.7 | 1653.9 | |||||
3550.7 | 1660.5 | |||||
FeSO4·7H2O | 3228.6 | 1596.5 | 976.0 | 418.4 | 1086.4 | 607.8 |
3385.1 | 1621.0 | 988.1 | 424.3 | 1158.7 | 617.7 | |
3464.1 | 1651.1 | 431.9 | ||||
3563.0 | 1673.8 | 442.3 |
FeSO4·H2O | FeSO4·4H2O | FeSO4·7H2O | Assignment |
---|---|---|---|
0.43 | 0.43 | 5T2g→3T2g | |
0.45 | 0.45 | 5T2g→3T2g | |
0.47 | 0.47 | 5T2g→3T2g | |
0.51 | 0.51 | 5T2g→1A1g | |
0.94 | 0.98 | 0.92 | 5Eg→5B1g |
1.17 | 1.17 | E1g→T2g | |
1.33 | 5Eg→5A1g | ||
1.52 | 1.45 | 1.46 | 2 or 2 |
1.95 | 1.95 | + (or ) | |
1.99 | 1.98 | + (or ) | |
2.24 | 2.25 | (or ) + | |
2.40 | 2.44 | 2.41 | + + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, X.; Zhang, R.; Shi, E.; Liu, J.; Ling, Z. Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications. Universe 2024, 10, 462. https://doi.org/10.3390/universe10120462
Zhuo X, Zhang R, Shi E, Liu J, Ling Z. Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications. Universe. 2024; 10(12):462. https://doi.org/10.3390/universe10120462
Chicago/Turabian StyleZhuo, Xiai, Ruize Zhang, Erbin Shi, Jiahui Liu, and Zongcheng Ling. 2024. "Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications" Universe 10, no. 12: 462. https://doi.org/10.3390/universe10120462
APA StyleZhuo, X., Zhang, R., Shi, E., Liu, J., & Ling, Z. (2024). Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications. Universe, 10(12), 462. https://doi.org/10.3390/universe10120462