The Modeling of Pulsar Magnetosphere and Radiation
Abstract
:1. Introduction
2. Pulsar Gamma-Ray Observations
3. Time-Dependent Maxwell Equations
4. The Vacuum Dipole Magnetospheres
4.1. Field Structure of the Vacuum Magnetospheres
4.2. The Radiation Models from the Vacuum Magnetospheres
4.3. Light Curve and Spectra Modeling from the Vacuum Magnetospheres
5. The Force-Free Magnetospheres
5.1. Field Structure of the Force-Free Magnetospheres
5.2. Light Curve and Spectra Modeling from the Force-Free Magnetospheres
6. The Resistive Magnetospheres
6.1. Field Structure of the Resistive Magnetospheres
6.2. Light Curve and Spectra Modeling from the Resistive Magnetospheres
7. The PIC Magnetospheres
7.1. Field Structure of the PIC Magnetosphere
7.2. Light Curve and Spectra Modeling from the PIC Magnetospheres
8. The Combined Force-Free and AE Magnetospheres
8.1. Field Structure of the Combined Force-Free and AE Magnetospheres
8.2. Light Curve and Spectra Modeling from the Combined Force-Free and AE Magnetospheres
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hewish, A.; Bell, S.J.; Pilkington, J.D.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars. Astrophys. J. Suppl. 2010, 187, 460. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; et al. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars. Astrophys. J. Suppl. 2013, 208, 17. [Google Scholar] [CrossRef]
- Smith, D.A.; Abdollahi, S.; Ajello, M.; Bailes, M.; Baldini, L.; Ballet, J.; Baring, M.G.; Bassa, C.; Gonzalez, J.B.; Bellazzini, R.; et al. The Third Large Area Telescope Catalog of Gamma-ray Pulsars. Astrophys. J. Suppl. 2023, 958, 191. [Google Scholar] [CrossRef]
- Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; De Almeida, U.B.; Barrio, J.A.; González, J.B.; Bednarek, W.; Bernardini, E.; et al. Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astrophys. J. 2016, 585, A133. [Google Scholar] [CrossRef]
- Abdalla, H.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; et al. First ground-based measurement of sub-20 GeV to 100GeV γ-Rays from the Vela pulsar with H.E.S.S. II. Astrophys. J. 2016, 620, A66. [Google Scholar]
- Spir-Jacob, M.; Djannati-Ataï, A.; Mohrmann, L.; Giavitto, G.; Khélifi, B.; Rudak, B.; Venter, C.; Zanin, R. Detection of sub-100 GeV gamma-ray pulsations from PSR B1706-44 with H.E.S.S. arXiv 2019, arXiv:1908.06464. [Google Scholar]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; de Almeida, U.B.; Barrio, J.A.; et al. Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV. Astrophys. J. 2020, 643, L14. [Google Scholar]
- Deutsch, A.J. The electromagnetic field of an idealized star in rigid rotation in vacuo. Ann. D’Astrophys. 1955, 18, 1–10. [Google Scholar]
- Contopoulos, I.; Kazanas, D.; Fendt, C. The Axisymmetric Pulsar Magnetosphere. Astrophys. J. 1999, 511, 351. [Google Scholar] [CrossRef]
- Komissarov, S.S. Simulations of the axisymmetric magnetospheres of neutron stars. Mon. Not. R. Astron. Soc. 2016, 367, 19–31. [Google Scholar] [CrossRef]
- McKinney, J.C. Relativistic force-free electrodynamic simulations of neutron star magnetospheres. Mon. Not. R. Astron. Soc. 2016, 368, L30–L34. [Google Scholar] [CrossRef]
- Yu, C. A high-order WENO-based staggered Godunov-type scheme with constrained transport for force-free electrodynamics. Mon. Not. R. Astron. Soc. 2011, 411, 2461–2470. [Google Scholar] [CrossRef]
- Parfrey, K.; Beloborodov, A.M.; Hui, L. Introducing PHAEDRA: A new spectral code for simulations of relativistic magnetospheres. Mon. Not. R. Astron. Soc. 2012, 423, 1416. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, L.; Sun, S. Spectral simulations of an axisymmetric force-free pulsar magnetosphere. Mon. Not. R. Astron. Soc. 2016, 455, 4267–4273. [Google Scholar] [CrossRef]
- Spitkovsky, A. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators. Astrophys. J. 2006, 648, L51. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Contopoulos, I. Three-dimensional numerical simulations of the pulsar magnetosphere: Preliminary results. Astron. Astrophys. 2009, 496, 495. [Google Scholar] [CrossRef]
- Pétri, J. The pulsar force-free magnetosphere linked to its striped wind: Time-dependent pseudo-spectral simulations. Mon. Not. R. Astron. Soc. 2012, 424, 605–619. [Google Scholar] [CrossRef]
- Etienne, Z.B.; Wan, M.B.; Babiuc, M.C.; McWilliams, S.T.; Choudhary, A. GiRaFFE: An Open-Source General Relativistic Force-Free Electrodynamics Code. Class. Quantum Gravity 2012, 34, 215001. [Google Scholar] [CrossRef]
- Li, J.; Spitkovsky, A.; Tchekhovskoy, A. Resistive Solutions for Pulsar Magnetospheres. Astrophys. J. 2012, 746, 60. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Kazanas, D.; Harding, A.; Contopoulos, I. Toward a Realistic Pulsar Magnetosphere. Astrophys. J. 2012, 749, 2. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, L.; Sun, S. An oblique pulsar magnetosphere with a plasma conductivity. Mon. Not. R. Astron. Soc. 2016, 461, 1068–1075. [Google Scholar] [CrossRef]
- Philippov, A.A.; Spitkovsky, A. Ab Initio Pulsar Magnetosphere: Three-dimensional Particlein-cell Simulations of Axisymmetric Pulsars. Astrophys. J. 2014, 785, L33. [Google Scholar] [CrossRef]
- Chen, A.Y.; Beloborodov, A.M. Electrodynamics of Axisymmetric Pulsar Magnetosphere with Electron-Positron Discharge: A Numerical Experiment. Astrophys. J. 2014, 795, L22. [Google Scholar] [CrossRef]
- Belyaev, M.A. Dissipation, energy transfer, and spin-down luminosity in 2.5D PIC simulations of the pulsar magnetosphere. Mon. Not. R. Astron. Soc. 2015, 449, 2759. [Google Scholar] [CrossRef]
- Cerutti, B.; Philippov, A.; Parfrey, K.; Spitkovsky, A. Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 2015, 448, 606. [Google Scholar] [CrossRef]
- Philippov, A.A.; Spitkovsky, A.; Cerutti, B. Ab Initio Pulsar Magnetosphere: Three-dimensional Particle-in-cell Simulations of Oblique Pulsars. Astrophys. J. 2015, 801, L19. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Brambilla, G.; Timokhin, A.; Harding, A.K.; Kazanas, D. Three-dimensional Kinetic Pulsar Magnetosphere Models: Connecting to Gamma-Ray Observations. Astrophys. J. 2018, 857, 44. [Google Scholar] [CrossRef]
- Brambilla, G.; Kalapotharakos, K.; Timokhin, A.N.; Harding, A.K.; Kazanas, D. Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere. Astrophys. J. 2018, 858, 81. [Google Scholar] [CrossRef]
- Contopoulos, I. Are there two types of pulsars? Mon. Not. R. Astron. Soc. 2016, 463, L94. [Google Scholar] [CrossRef]
- Pétri, J. Radiative pulsar magnetospheres: Aligned rotator. Mon. Not. R. Astron. Soc. 2020, 484, 5669. [Google Scholar] [CrossRef]
- Cao, G.; Yang, X.B. Three-dimensional Dissipative Pulsar Magnetospheres with Aristotelian Electrodynamics. Astrophys. J. 2020, 889, 29. [Google Scholar] [CrossRef]
- Pétri, J. Radiative pulsar magnetospheres: Oblique rotators. Mon. Not. R. Astron. Soc. 2022, 512, 2854–2866. [Google Scholar] [CrossRef]
- Philippov, A.; Kramer, M. Pulsar Magnetospheres and Their Radiation. Annu. Rev. Astron. Astrophys. 2022, 60, 495–558. [Google Scholar] [CrossRef]
- Contopoulos, I. The equatorial current sheet and other interesting features of the pulsar magnetosphere. J. Plasma Phys. 2016, 82, 635820303. [Google Scholar] [CrossRef]
- Harding, A.K. Gamma-ray pulsar light curves as probes of magnetospheric structure. J. Plasma Phys. 2016, 82, 635820306. [Google Scholar] [CrossRef]
- Pétri, J. Theory of pulsar magnetosphere and wind. J. Plasma Phys. 2016, 82, 635820502. [Google Scholar] [CrossRef]
- Cerutti, B.; Beloborodov, A.M. Electrodynamics of pulsar magnetospheres. Space Sci. Rev. 2017, 207, 111. [Google Scholar] [CrossRef]
- Harding, A.K. The Emission Physics of Millisecond Pulsars. In Millisecond Pulsars; Bhattacharyya, S., Papitto, A., Bhattacharya, D., Eds.; Astrophysics and Space Science Library; Springer: Cham, Switzerland, 2022; Volume 465, pp. 57–85. [Google Scholar]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. The Vela Pulsar: Results from the First Year of Fermi LAT Observations. Astrophys. J. 2010, 713, 154–165. [Google Scholar] [CrossRef]
- Pétri, J. Multipolar electromagnetic fields around neutron stars: General-relativistic vacuum solutions. Mon. Not. R. Astron. Soc. 2017, 472, 3304–3336. [Google Scholar] [CrossRef]
- Michel, F.; Li, H. Electrodynamics of neutron stars. Phys. Rep. 1999, 318, 227–297. [Google Scholar] [CrossRef]
- Pacini, J. Energy Emission from a Neutron Star. Nature 1967, 216, 567–568. [Google Scholar] [CrossRef]
- Goldreich, P.; Julian, W.H. Pulsar Electrodynamics. Astrophys. J. 1969, 157, 869–880. [Google Scholar] [CrossRef]
- Ruderman, M.A.; Sutherland, P.G. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 1975, 196, 51. [Google Scholar] [CrossRef]
- Daugherty, J.K.; Harding, A.K. Electromagnetic cascades in pulsars. Astrophys. J. 1982, 252, 337. [Google Scholar] [CrossRef]
- Dyks, J.; Rudak, B. Two-Pole Caustic Model for High-Energy Light Curves of Pulsars. Astrophys. J. 2003, 598, 1201. [Google Scholar] [CrossRef]
- Muslimov, A.G.; Harding, A.K. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps. Astrophys. J. 2004, 606, 1143. [Google Scholar] [CrossRef]
- Cheng, K.S.; Ho, C.; Ruderman, M. Energetic Radiation from Rapidly Spinning Pulsars. I. Outer Magnetosphere Gaps. Astrophys. J. 1986, 300, 500. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, K.S. High-Energy Radiation from Rapidly Spinning Pulsars with Thick Outer Gaps. Astrophys. J. 1997, 487, 370. [Google Scholar] [CrossRef]
- Cheng, K.S.; Ruderman, M.; Zhang, L. A Three-dimensional Outer Magnetospheric Gap Model for Gamma-Ray Pulsars: Geometry, Pair Production, Emission Morphologies, and Phase-resolved Spectra. Astrophys. J. 2000, 537, 964. [Google Scholar] [CrossRef]
- Hirotani, K.; Harding, A.K.; Shibata, S. Electrodynamics of an Outer Gap Accelerator: Formation of a Soft Power-Law Spectrum between 100 MeV and 3 GeV. Astrophys. J. 2003, 591, 334. [Google Scholar] [CrossRef]
- Takata, J.; Shibata, S.; Hirotani, K. A pulsar outer gap model with trans-Þeld structure. Mon. Not. R. Astron. Soc. 2004, 354, 1120–1132. [Google Scholar] [CrossRef]
- Takata, J.; Shibata, S.; Hirotani, K.; Chang, H.K. A two-dimensional electrodynamical outer gap model for gamma-ray pulsars: gamma-ray spectrum. Mon. Not. R. Astron. Soc. 2006, 366, 1310–1328. [Google Scholar] [CrossRef]
- Coroniti, F.V. Magnetically Striped Relativistic Magnetohydrodynamic Winds: The Crab Nebula Revisited. Astrophys. J. 1990, 349, 538. [Google Scholar] [CrossRef]
- Pétri, J.; Kirk, J. The Polarization of High-Energy Pulsar Radiation in the Striped Wind Model. Astrophys. J. 2005, 627, L37. [Google Scholar] [CrossRef]
- Pétri, J. High-energy pulses and phase-resolved spectra by inverse Compton emission in the pulsar striped wind. Application to Geminga. Astron. Astrophys. 2009, 503, 13–18. [Google Scholar] [CrossRef]
- Pétri, J. High-energy emission from the pulsar striped wind: A synchrotron model for gamma-ray pulsars. Mon. Not. R. Astron. Soc. 2012, 424, 2023. [Google Scholar] [CrossRef]
- Uzdensky, D.; Spitkovsky, A. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres. Astrophys. J. 2014, 780, 3. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, L. Revisiting of pulsed γ-ray properties of millisecond pulsars in the pulsar striped winds. Mon. Not. R. Astron. Soc. 2019, 483, 1796–1801. [Google Scholar] [CrossRef]
- Qiao, G.J.; Lee, K.J.; Wang, H.G.; Xu, R.X.; Han, J.L. The Inner Annular Gap for Pulsar Radiation: γ-Ray and Radio Emission. Astrophys. J. 2004, 606, L49. [Google Scholar] [CrossRef]
- Qiao, G.J.; Lee, K.J.; Zhang, B.; Wang, H.G.; Xu, R.X. An Annular Gap Acceleration Model for γ-ray Emission of Pulsars. Chin. J. Astron. Astrophys. 2007, 7, 496. [Google Scholar] [CrossRef]
- Bai, X.N.; Spitkovsky, A. Uncertainties of Modeling Gamma-ray Pulsar Light Curves Using Vacuum Dipole Magnetic Field. Astrophys. J. 2010, 715, 1270–1281. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Jiang, Z.J. Phase-averaged Spestra and Luminosities of Gamma-ray Emissions From Young Isolated Pulsars. Astrophys. J. 2013, 765, 124. [Google Scholar] [CrossRef]
- Watters, K.P.; Romani, R.W.; Weltevrede, P.; Johnston, S. An Atlas for Interpreting γ-Ray Pulsar Light Curves. Astrophys. J. 2009, 695, 1289. [Google Scholar] [CrossRef]
- Romani, R.W.; Watters, K.P. Constraining Pulsar Magnetosphere Geometry with γ-ray Light Curves. Astrophys. J. 2010, 714, 810. [Google Scholar] [CrossRef]
- Venter, C.; Harding, A.K.; Guillemot, L. Probing Millisecond Pulsar Emission Geometry Using Light Curves from the Fermi/Large Area Telescope. Astrophys. J. 2009, 707, 800. [Google Scholar] [CrossRef]
- Venter, C.; Johnson, T.J.; Harding, A.K. Modeling Phase-aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves. Astrophys. J. 2012, 744, 34. [Google Scholar] [CrossRef]
- Johnson, T.J.; Venter, C.; Harding, A.K.; Guillemot, L.; Smith, D.A.; Kramer, M.; Çelik, Ö.; Den Hartog, P.R.; Ferrara, E.C.; Hou, X.; et al. Constraints on the Emission Geometries and Spin Evolution of Gamma-Ray Millisecond Pulsars. Astrophys. J. Suppl. 2014, 213, 6. [Google Scholar] [CrossRef]
- Pierbattista, M.; Harding, A.K.; Grenier, I.A.; Johnson, T.J.; Caraveo, P.A.; Kerr, M.; Gonthier, P.L. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars. Astrophys. J. 2015, 575, 3. [Google Scholar]
- Pierbattista, M.; Harding, A.K.; Gonthier, P.L.; Grenier, I.A. Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with γ-ray and radio emission geometries. Astrophys. J. 2016, 588, 137. [Google Scholar]
- Wang, Y.; Takata, J.; Cheng, K.S. Three-dimensional two-layer outer gap model: Fermi energy-dependent light curves of the Vela pulsar. Mon. Not. R. Astron. Soc. 2011, 414, 2664–2673. [Google Scholar] [CrossRef]
- Du, Y.J.; Han, J.L.; Qiao, G.J.; Chou, C.K. Gamma-ray Emission from the Vela Pulsar Modeled with the Annular Gap and the Core Gap. Astrophys. J. 2011, 731, 2. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L. Energy-dependent Light Curves and Phase-resolved Spectra of High-energy Gamma-rays from the Crab Pulsar. Astrophys. J. 2010, 725, 2225. [Google Scholar] [CrossRef]
- Harding, A.K.; Stern, J.V.; Dyks, J.; Frackowiak, M. High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar. Astrophys. J. 2008, 680, 1378. [Google Scholar] [CrossRef]
- Du, Y.J.; Qiao, G.J.; Wang, W. Radio-to-TeV Phase-resolved Emission from the Crab Pulsar: The Annular Gap Model. Astrophys. J. 2012, 748, 84. [Google Scholar] [CrossRef]
- Dyks, J.; Harding, A.K.; Rudak, B. Relativistic Effects and Polarization in Three High-Energy Pulsar Models. Astrophys. J. 2004, 606, 1125. [Google Scholar] [CrossRef]
- Takata, J.; Chang, H.K. Pulse Profiles, Spectra, and Polarization Characteristics of Nonthermal Emissions from the Crab-like Pulsars. Astrophys. J. 2007, 656, 1044. [Google Scholar] [CrossRef]
- Bucciantini, N.; Arons, J.; Amato, E. Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 2011, 410, 381–398. [Google Scholar] [CrossRef]
- Gruzinov, A. Stability in Force-Free Electrodynamics. arXiv 1999, arXiv:astro-ph/9902288. [Google Scholar]
- Blandford, R.D. Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology; Gilfanov, M., Sunyaev, R., Churazov, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; p. 381. [Google Scholar]
- Kato, Y.E. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model. Astrophys. J. 2017, 850, 205. [Google Scholar] [CrossRef]
- Scharlemann, E.T.; Wagoner, R.V. Aligned Rotating Magnetospheres. General Analysis. Astrophys. J. 1973, 182, 951. [Google Scholar] [CrossRef]
- Michel, F.C. Rotating Magnetospheres: An Exact 3-D Solution. Astrophys. J. 1973, 180, 133. [Google Scholar] [CrossRef]
- Goodwin, S.P.; Mestel, J.; Mestel, L.; Wright, G.A.E. An idealized pulsar magnetosphere: The relativistic force-free approximation. Mon. Not. R. Astron. Soc. 2004, 349, 213–224. [Google Scholar] [CrossRef]
- Timokhin, A.N. On the force-free magnetosphere of an aligned rotator. Mon. Not. R. Astron. Soc. 2006, 368, 1055–1072. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Spitkovsky, A.; Li, J.G. Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: Oblique rotators. Mon. Not. R. Astron. Soc. Lett. 2013, 435, L1–L5. [Google Scholar] [CrossRef]
- Pétri, J. General-relativistic force-free pulsar magnetospheres. Mon. Not. R. Astron. Soc. 2016, 455, 3779. [Google Scholar] [CrossRef]
- Paschalidis, V.; Shapiro, S.L. A new scheme for matching general relativistic ideal magnetohydrodynamics to its force-free limit. Phys. Rev. D 2013, 88, 104031. [Google Scholar] [CrossRef]
- Carrasco, F.; Palenzuela, C.; Reula, O. Pulsar magnetospheres in general relativity. Phys. Rev. D 2018, 98, 023010. [Google Scholar] [CrossRef]
- Bai, X.N.; Spitkovsky, A. Modeling of Gamma-ray Pulsar Light Curves Using the Force-free Magnetic Field. Astrophys. J. 2010, 715, 1282. [Google Scholar] [CrossRef]
- Harding, A.K.; DeCesar, M.E.; Miller, M.C.; Kalapotharakos, C.; Contopoulos, I. Gamma-ray pulsar light curves in vacuum and force-free geometry. arXiv 2011, arXiv:1111.0828. [Google Scholar]
- Benli, O.; Pétri, J.; Mitra, D. Constraining millisecond pulsar geometry using time-aligned radio and gamma-ray pulse profile. Astron. Astrophys. 2021, 647, 101. [Google Scholar] [CrossRef]
- Pétri, J.; Mitra, D. Young radio-loud gamma-ray pulsar light curve fitting. Astron. Astrophys. 2021, 654, 106. [Google Scholar] [CrossRef]
- Barnard, M.; Venter, C.; Harding, A.K.; Kalapotharakos, C.; Johnson, T. Probing the High-energy Gamma-Ray Emission Mechanism in the Vela Pulsar via Phase-resolved Spectral and Energy-dependent Light-curve Modeling. Astrophys. J. 2021, 925, 184. [Google Scholar] [CrossRef]
- Harding, A.K.; Kalapotharakos, C. Synchrotron Self-Compton Emission from the Crab and Other Pulsars. Astrophys. J. 2015, 811, 63. [Google Scholar] [CrossRef]
- Harding, A.K.; Venter, C.; Kalapotharakos, C. Very-High-Energy Emission From Pulsars. Astrophys. J. 2021, 923, 194. [Google Scholar] [CrossRef]
- Harding, A.K.; Kalapotharakos, C.; Barnard, M.; Venter, C. Multi-TeV Emission from the Vela Pulsar. Astrophys. J. 2017, 869, 18. [Google Scholar] [CrossRef]
- Harding, A.K.; Kalapotharakos, C. Multiwavelength Polarization of Rotation-Powered Pulsars. Astrophys. J. 2017, 840, 73. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Harding, A.K.; Kazanas, D.; Contopoulos, I. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity. Astrophys. J. 2012, 754, L1. [Google Scholar] [CrossRef]
- Cao, G.; Yang, X.B. Modeling Gamma-Ray Light Curves with More Realistic Pulsar Magnetospheres. Astrophys. J. 2019, 874, 166. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Harding, A.K.; Kazanas, D. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: From Theory to Fermi Observations. Astrophys. J. 2014, 793, 97. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Harding, A.K.; Kazanas, D.; Brambilla, G. Fermi Gamma-Ray Pulsars: Understanding the High-energy Emission from Dissipative Magnetospheres. Astrophys. J. 2017, 842, 80. [Google Scholar] [CrossRef]
- Brambilla, G.; Kalapotharakos, C.; Harding, A.K.; Kazanas, D. Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars. Astrophys. J. 2015, 804, 84. [Google Scholar] [CrossRef]
- Yang, X.B.; Cao, G. Exploring the Energy-dependent Radiation Properties in Dissipative Magnetospheres with Fermi Pulsars. Astrophys. J. 2021, 909, 88. [Google Scholar] [CrossRef]
- Philippov, A.A.; Cerutti, B.; Tchekhovskoy, A.; Spitkovsky, A. Ab-initio pulsar magnetosphere: The role of general relativity. Astrophys. J. 2015, 815, L19. [Google Scholar] [CrossRef]
- Philippov, A. A; Spitkovsky, A. Ab-initio Pulsar Magnetosphere: Particle Acceleration in Oblique Rotators and High-energy Emission Modeling. Astrophys. J. 2018, 855, 94. [Google Scholar] [CrossRef]
- Cerutti, B.; Philippov, A.A.; Spitkovsky, A.A. Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. 2016, 457, 2401. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Wadiasingh, Z.; Harding, A.K.; Kazanas, D. The Gamma-Ray Pulsar Phenomenology in View of 3D Kinetic Global Magnetosphere Models. arXiv 2023, arXiv:2303.04054. [Google Scholar] [CrossRef]
- Cerutti, B.; Mortier, J.; Philippov, A.A. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars. Mon. Not. R. Astron. Soc. 2016, 463, 89–93. [Google Scholar] [CrossRef]
- Mestel, L. Stellar Magnetism; International Series of Monographs on Physics 99; Clarendon: Oxford, UK, 1999. [Google Scholar]
- Pétri, J. An new radiation reaction approximation for particle dynamics in the strong field regime. Astron. Astrophys. 2023, 677, 72. [Google Scholar] [CrossRef]
- Finkbeiner, B.; Herold, H.; Ertl, T.; Ruder, H. Effects of radiation damping on particle motion in pulsar vacuum fields. Astron. Astrophys. 1989, 225, 479. [Google Scholar]
- Gruzinov, A. Electrodynamics of Massless Charges with Application to Pulsars. arXiv 2012, arXiv:1205.3367. [Google Scholar]
- Gruzinov, A. Aristotelian Electrodynamics solves the Pulsar: Lower Efficiency of Strong Pulsars. arXiv 2013, arXiv:1303.4094. [Google Scholar]
- Pétri, J. Electrodynamics and Radiation from Rotating Neutron Star Magnetospheres. Universe 2020, 6, 15. [Google Scholar] [CrossRef]
- Cao, G.; Yang, X.B. The Pulsar Gamma-Ray Emission from High-resolution Dissipative Magnetospheres. Astrophys. J. 2022, 925, 130. [Google Scholar] [CrossRef]
- Cai, Y.; Gralla, S.E.; Paschalidis, V. Dynamics of ultrarelativistic charged particles with strong radiation reaction. I. Aristotelian equilibrium state. Phys. Rev. D 2023, 108, 063018. [Google Scholar] [CrossRef]
- Cai, Y.; Gralla, S.E.; Paschalidis, V. Dynamics of ultrarelativistic charged particles with strong radiation reaction. II. Entry into Aristotelian equilibrium. Phys. Rev. D 2023, 108, 063019. [Google Scholar] [CrossRef]
- Pétri, J. Pulsar gamma-ray emission in the radiation reaction regime. Mon. Not. R. Astron. Soc. 2019, 484, 5669–5691. [Google Scholar] [CrossRef]
- Viganó, D.; Torres, D.F.; Hirotani, K.; Pessah, M.E. Compact formulae, dynamics and radiation of charged particles under synchro-curvature losses. Mon. Not. R. Astron. Soc. 2015, 447, 1164–1172. [Google Scholar] [CrossRef]
- Torres, D.F. Order parameters for the high-energy spectra of pulsars. Nature 2018, 2, 247. [Google Scholar] [CrossRef]
- Cao, G.; Yang, X.B. The energy-dependent gamma-ray light curves and spectra of the Vela pulsar in the dissipative magnetospheres. Astrophys. J. 2024, 962, 184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, G.; Yang, X.; Zhang, L. The Modeling of Pulsar Magnetosphere and Radiation. Universe 2024, 10, 130. https://doi.org/10.3390/universe10030130
Cao G, Yang X, Zhang L. The Modeling of Pulsar Magnetosphere and Radiation. Universe. 2024; 10(3):130. https://doi.org/10.3390/universe10030130
Chicago/Turabian StyleCao, Gang, Xiongbang Yang, and Li Zhang. 2024. "The Modeling of Pulsar Magnetosphere and Radiation" Universe 10, no. 3: 130. https://doi.org/10.3390/universe10030130
APA StyleCao, G., Yang, X., & Zhang, L. (2024). The Modeling of Pulsar Magnetosphere and Radiation. Universe, 10(3), 130. https://doi.org/10.3390/universe10030130