The ASTRI Mini-Array: A New Pathfinder for Imaging Cherenkov Telescope Arrays
Abstract
:1. Introduction
The ASTRI Mini-Array in a Nutshell
2. Challenges and Innovations
2.1. The Optical Design
2.1.1. Mirrors’ Production
2.2. The Cherenkov Camera
2.2.1. Silicon Photomultipliers
2.2.2. Front End Electronics
2.2.3. Stereo Event Builder
2.2.4. Thermal Control System
2.2.5. The NSB Filter
2.3. The Mechanical Structure
- Operations as the software does not need to control at least 36 actuators per telescope during every night throughout the year.
- Maintenance as there will be no permanent mechanisms and corresponding control electronics that will need maintenance, either preventive or corrective. In case of mirror misalignment, it is true that one needs to remount the actuators (or more likely a subset of them), but this will not increase the technical downtime of the telescope because the realignment operation will need an optical camera to replace the Cherenkov camera and that operation will happen simultaneously with mounting of the actuators.
3. Operations: An Array of Nine
3.1. ASTRI Mini-Array Software
3.2. Maintenance Activities
3.2.1. Preventive Maintenance
3.2.2. Predictive Maintenance
3.2.3. Corrective Maintenance
- Removal and Replacement of the defective item. Depending on the subsystem, the item can be the subsystem itself or an element of it. This will be the normal corrective maintenance procedure. In the case where the item is repairable, then it will be repaired either at the La Laguna site or sent to the manufacturer. The restored item will remain as a spare part.
- Removal and Repair of the defective item. In this case, once repaired, the item is restored. The repair will happen at the site if possible.
- Repair of the defective item without removal. An example of this is the misalignment of the panels of the primary mirrors, considered a maintenance activity.
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALMA | Atacama Large Millimeter/Submillimeter Array |
ADC | Analog to Digital Converter |
AIT/V | Assembly, Integration, Test/Verification |
ASTRI | Astrofisica con Specchi a Tecnologia Replicante Italiana |
AZ | Azimuth |
CMMS | Computerized Maintenance Management System |
CTAO | Cherenkov Telescope Array Observatory |
D80 | The diameter of the circle within which 80% of the photons in the ray tracing analysis fall. |
EL | Elevation |
FPGA | Field Programmable Gate Array |
FGG | Fundacion Galileo Galilei |
FoV | Field of View |
GCT | Gamma-ray Cherenkov Telescope |
HAWC | High-Altitude Water Cherenkov |
IAC | Instituto de Astrofisica de Canarias |
IACT | Imaging Atmospheric Cherenkov Telescope |
INAF | Istituto Nazionale di Astrofisica |
LHAASO | Large High Altitude Air Shower Observatory |
LLRU | Lowest Line Replaceable Unit |
NSB | Night Sky Background |
PDE | Photon Detection Efficiency |
PSF | Point Spread Function |
PWN | Planetary Wind Nebulae |
RAM | Reliability, Availability, Maintainability |
SCADA | Supervisor Control and Data Acquisition System |
SCT | Schwarzschild–Couder Telescope |
SiPM | Silicon Photomultiplier |
SNR | Supernova Remnant |
SST | Small-Sized Telescope |
TNG | Telescopio Nazionale Galileo |
VLA | Very Large Array |
1 | www.tng.iac.es (accessed on 5 March 2024) |
2 | https://www.weeroc.com (accessed on 5 March 2024) |
3 | https://science.nrao.edu/facilities/vla (accessed on 5 March 2024) |
4 | https://www.almaobservatory.org/en/home/ (accessed on 5 March 2024) |
5 | http://themis.iac.es/ (accessed on 5 March 2024) |
References
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef]
- Pareschi, G. The ASTRI SST-2M prototype and mini-array for the Cherenkov Telescope Array (CTA). In Proceedings of the Ground-Based and Airborne Telescopes VI, Edinburgh, UK, 26 June–1 July 2016; p. 99065T. [Google Scholar] [CrossRef]
- Lombardi, S.; Catalano, O.; Scuderi, S.; Antonelli, L.A.; Pareschi, G.; Antolini, E.; Arrabito, L.; Bellassai, G.; Bernlöhr, K.; Bigongiari, C.; et al. First detection of the Crab Nebula at TeV energies with a Cherenkov telescope in a dual-mirror Schwarzschild-Couder configuration: The ASTRI-Horn telescope. Astron. Astrophys. 2020, 634, A22. [Google Scholar] [CrossRef]
- Vercellone, S.; Bigongiari, C.; Burtovoi, A.; Cardillo, M.; Catalano, O.; Franceschini, A.; Lombardi, S.; Nava, L.; Pintore, F.; Stamerra, A.; et al. ASTRI Mini-Array core science at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 1–42. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Barber, A.S.; Bautista-Elivar, N.; et al. Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. Astrophys. J. 2017, 843, 39. [Google Scholar] [CrossRef]
- Cao, Z. A future project at tibet: The large high altitude air shower observatory (LHAASO). Chin. Phys. C 2010, 34, 249–252. [Google Scholar] [CrossRef]
- Vercellone, S. Science with the ASTRI Mini-Array: From Experiment to Open Observatory. Universe 2024, 10, 94. [Google Scholar] [CrossRef]
- Saturni, F.G.; Arcaro, C.H.E.; Balmaverde, B.; Becerra González, J.; Caccianiga, A.; Capalbi, M.; Lamastra, A.; Lombardi, S.; Lucarelli, F.; Alves Batista, R.; et al. Extragalactic observatory science with the ASTRI mini-array at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 91–111. [Google Scholar] [CrossRef]
- D’Aì, A.; Amato, E.; Burtovoi, A.; Compagnino, A.A.; Fiori, M.; Giuliani, A.; La Palombara, N.; Paizis, A.; Piano, G.; Saturni, F.G.; et al. Galactic observatory science with the ASTRI Mini-Array at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 139–175. [Google Scholar] [CrossRef]
- White, R.; Amans, J.P.; Berge, D.; Bonanno, G.; Bose, R.B.; Brown, A.M.; Buckley, J.H.; Chadwick, P.M.; Conte, F.; Cotter, G.; et al. The Small-Sized Telescopes for the Southern Site of the Cherenkov Telescope Array. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 728. [Google Scholar] [CrossRef]
- La Palombara, N.; Sironi, G.; Giro, E.; Scuderi, S.; Canestrari, R.; Iovenitti, S.; Garczarczyk, M.; Krause, M.; Diebold, S.; Millul, R.; et al. Mirror production for the Cherenkov telescopes of the ASTRI mini-array and the MST project for the Cherenkov Telescope Array. J. Astron. Telesc. Instrum. Syst. 2022, 8, 014005. [Google Scholar] [CrossRef]
- Vassiliev, V.; Fegan, S.; Brousseau, P. Wide field aplanatic two-mirror telescopes for ground-based γ-ray astronomy. Astropart. Phys. 2007, 28, 10–27. [Google Scholar] [CrossRef]
- Sironi, G. Aplanatic telescopes based on Schwarzschild optical configuration: From grazing incidence Wolter-like X-ray optics to Cherenkov two-mirror normal incidence telescopes. In Proceedings of the 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Diego, CA, USA, 6–10 August 2017; Volume 10399, p. 1039903. [Google Scholar] [CrossRef]
- Giro, E.; Canestrari, R.; Sironi, G.; Antolini, E.; Conconi, P.; Fermino, C.E.; Gargano, C.; Rodeghiero, G.; Russo, F.; Scuderi, S.; et al. First optical validation of a Schwarzschild Couder telescope: The ASTRI SST-2M Cherenkov telescope. Astron. Astrophys. 2017, 608, A86. [Google Scholar] [CrossRef]
- Sol, H.; Greenshaw, T.; Le Blanc, O.; White, R.; GCT project, C. Observing the sky at extremely high energies with CTA: Status of the GCT project. In Proceedings of the 2017 35th International Cosmic Ray Conference (ICRC2017), Busan, Republic of Korea, 10–20 July 2017; Volume 301, p. 822. [Google Scholar] [CrossRef]
- Adams, C.B.; Alfaro, R.; Ambrosi, G.; Ambrosio, M.; Aramo, C.; Arlen, T.; Batista, P.I.; Benbow, W.; Bertucci, B.; Bissaldi, E.; et al. Detection of the Crab Nebula with the 9.7 m prototype Schwarzschild-Couder telescope. Astropart. Phys. 2021, 128, 102562. [Google Scholar] [CrossRef]
- Ghigo, M.; Basso, S.; Canestrari, R.; Proserpio, L. Development of hot slumping technique and last optical performances obtained on a 500mm diameter slumped segment prototype for adaptive optics. In Proceedings of the Astronomical and Space Optical Systems, San Diego, CA, USA, 2–6 August 2009; p. 74390M. [Google Scholar] [CrossRef]
- Canestrari, R.; Pareschi, G.; Parodi, G.; Martelli, F.; Missaglia, N.; Banham, R. Cold-shaping of thin glass foils as a method for mirror processing: From basic concepts to mass production of mirrors. Opt. Eng. 2013, 52, 051204. [Google Scholar] [CrossRef]
- Sottile, G.; Sangiorgi, P.; Gargano, C.; Lo Gerfo, F.; Corpora, M.; Catalano, O.; Impiombato, D.; Mollica, D.; Capalbi, M.; Mineo, T.; et al. The ASTRI Cherenkov Camera: From the prototype to the industrial version for the Mini-Array. arXiv 2023, arXiv:2301.09915. [Google Scholar] [CrossRef]
- Dorner, D.; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; Bulinski, M.; et al. FACT—Highlights from more than Five Years of Unbiased Monitoring at TeV Energies. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Republic of Korea, 10–20 July 2017; 2017; Volume 301, p. 609. [Google Scholar] [CrossRef]
- Aharonian, F.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Construction and on-site performance of the LHAASO WFCTA camera. Eur. Phys. J. C 2021, 81, 657. [Google Scholar] [CrossRef]
- Bonanno, G.; Romeo, G.; Occhipinti, G.; Timpanaro, M.C.; Grillo, A. Characterization method to achieve simultaneous absolute PDE measurements of all pixels of an ASTRI Mini-Array camera tile. Nucl. Instrum. Methods Phys. Res. A 2020, 980, 164489. [Google Scholar] [CrossRef]
- Tejedor, L.A.; Barrio, J.A.; Peñil, P.; Pérez, A.; Herranz, D.; Martín, J. A Trigger Interface Board for the Large and Medium Sized telescopes of the Cherenkov Telescope Array. Nucl. Instrum. Methods Phys. Res. A 2022, 1027, 166058. [Google Scholar] [CrossRef]
- Germani, S.; Lombardi, S.; La Parola, V.; Lucarelli, F.; Saturni, F.G.; Bigongiari, C.; Cardillo, M.; Mineo, T. The Stereo Event Builder software system of the ASTRI Mini-Array project. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Montréal, QB, Canada, 17–23 July 2022; Volume 12189, p. 121891R. [Google Scholar] [CrossRef]
- Benn, C.R.; Ellison, S.L. Brightness of the night sky over La Palma. New Astron. Rev. 1998, 42, 503–507. [Google Scholar] [CrossRef]
- Romeo, G.; Bonanno, G.; Sironi, G.; Timpanaro, M.C. Novel silicon photomultipliers suitable for dual-mirror small-sized telescopes of the Cherenkov telescope array. Nucl. Instrum. Methods Phys. Res. A 2018, 908, 117–127. [Google Scholar] [CrossRef]
- Marchiori, G.; Busatta, A.; Marcuzzi, E.; Manfrin, C.; Folla, I.; Pareschi, G.; Scuderi, S.; Giro, E.; Canestrari, R.; Tosti, G.; et al. ASTRI SST-2M: The design evolution from the prototype to the array telescope. In Proceedings of the Ground-Based and Airborne Telescopes VII, Austin, TX, USA, 10–15 June 2018; p. 107005W. [Google Scholar] [CrossRef]
- Canestrari, R.; Giro, E.; Sironi, G.; Antolini, E.; Fermino, C.E.; Fugazza, D.; Gargano, C.; Russo, F.; Scuderi, S.; Tosti, G.; et al. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: Status after the commissioning phase of the telescope. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Diego, CA, USA, 6–10 August 2017; Volume 10399, p. 1039904. [Google Scholar] [CrossRef]
- Bulgarelli, A.; Lucarelli, F.; Tosti, G.; Conforti, V.; Parmiggiani, N.; Schwarz, J.H.; Gallardo, J.G.A.; Antonelli, L.A.; Araya, M.; Balbo, M.; et al. Software architecture and development approach for the ASTRI Mini-Array project at the Teide Observatory. J. Astron. Telesc. Instrum. Syst. 2024, 10, 017001. [Google Scholar] [CrossRef]
- Parmiggiani, N.; Bulgarelli, A.; Baroncelli, L.; Addis, A.; Fioretti, V.; Di Piano, A.; Capalbi, M.; Catalano, O.; Conforti, V.; Fiori, M.; et al. The online observation quality system software architecture for the ASTRI Mini-Array project. In Proceedings of the 2022 Software and Cyberinfrastructure for Astronomy VII, Montréal, QB, Canada, 17–23 July 2022; Volume 12189, p. 121892H. [Google Scholar] [CrossRef]
- Lombardi, S.; Lucarelli, F.; Bigongiari, C.; Gallozzi, S.; Cardillo, M.; Mastropietro, M.; Saturni, F.G.; Visconti, F.; Antonelli, L.A.; Bulgarelli, A.; et al. The data processing, simulation, and archive systems of the ASTRI Mini-Array project. In Proceedings of the 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Montréal, QB, Canada, 17–23 July 2022; Volume 12189, p. 121890P. [Google Scholar] [CrossRef]
- Scuderi, S.; Giuliani, A.; Pareschi, G.; Tosti, G.; Catalano, O.; Amato, E.; Antonelli, L.A.; Becerra Gonzàles, J.; Bellassai, G.; Bigongiari, C.; et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide. J. High Energy Astrophys. 2022, 35, 52–68. [Google Scholar] [CrossRef]
- Incardona, F.; Costa, A.; Munari, K. Failure type detection and predictive maintenance for the next generation of imaging atmospheric Cherenkov telescopes. arXiv 2022, arXiv:2212.12381. [Google Scholar] [CrossRef]
- Incardona, F.; Costa, A.; Munari, K.; Gambadoro, S.; Germani, S.; Bruno, P.; Bulgarelli, A.; Conforti, V.; Gianotti, F.; Grillo, A.; et al. The monitoring, logging, and alarm system of the ASTRI mini-array gamma-ray air-Cherenkov experiment at the Observatorio del Teide. In Proceedings of the 2022 Software and Cyberinfrastructure for Astronomy VII, Montréal, QB, Canada, 17–23 July 2022; Volume 12189, p. 121891E. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
M1 (diameter) | 4300 mm |
M2 (diameter) | 1800 mm |
Distance M1–M2 | 3108.4 mm |
Distance M2–focal surface | 519.6 mm |
Effective focal length | 2154 mm |
F-number | 0.5 |
Field of view | 10.5 degree |
Plate scale | 37.64 mm/degree |
Parameter | Value |
---|---|
Photosensitive area (pixel size) | 6.975 × 6.975 mm |
Number of channels | 64 (8 × 8 matrix) |
Micro-cells’ size | 75 × 75 µm |
Optical Crosstalk (OCT) 1 | 5% |
Dark Count Rate (DCR) 1 | 4000 kHz |
Photon Detection Efficiency (PDE) @ 400 nm 2 | 51% |
Coating | None |
Item | Operation | Frequency | Time |
---|---|---|---|
AZ bearing spur gear | Greasing | 3 M | 90 min |
M2 load spreader | Lubrication | 3 M | 10 min |
Electrical cabinets filters | Change | 3 M | 10 min |
AZ bearing | Greasing | 6 M | 70 min |
AZ bearing seals | Inspection | 6 M | 55 min |
AZ motor | Inspection | 6 M | 20 min |
EL actuator | Inspection and greasing | 6 M | 60 min |
AZ/EL limit switches | Test | 6 M | 30 min |
AZ bearing screws | Inspection | 1 Y | 55 min |
AZ encoder | Inspection | 1 Y | 20 min |
EL axis bearing | Inspection | 1 Y | 25 min |
AZ stow pin | Inspection | 1 Y | 30 min |
EL stow pin | Inspection | 1 Y | 40 min |
M2 load spreader assembly | Inspection | 1 Y | 45 min |
Electrical cabinets | Inspection | 1 Y | 45 min |
LPS and grounding | Inspection | 1 Y | 60 min |
Base structure | Inspection | 3 Y | 55 min |
AZ fork structure | Inspection | 3 Y | 30 min |
EL axis bearing | Greasing | 3 Y | 15 min |
EL hinges | Greasing | 3 Y | 20 min |
AZ stow pin | Greasing | 3 Y | 30 min |
EL stow pin | Greasing | 3 Y | 35 min |
External electrical conduits | Inspection | 3 Y | 120 min |
AZ motor | Oil change | 5 Y | 90 min |
M2 load spreader | Greasing | 10 Y | 120 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scuderi, S., on behalf of the ASTRI Project. The ASTRI Mini-Array: A New Pathfinder for Imaging Cherenkov Telescope Arrays. Universe 2024, 10, 146. https://doi.org/10.3390/universe10030146
Scuderi S on behalf of the ASTRI Project. The ASTRI Mini-Array: A New Pathfinder for Imaging Cherenkov Telescope Arrays. Universe. 2024; 10(3):146. https://doi.org/10.3390/universe10030146
Chicago/Turabian StyleScuderi, Salvatore on behalf of the ASTRI Project. 2024. "The ASTRI Mini-Array: A New Pathfinder for Imaging Cherenkov Telescope Arrays" Universe 10, no. 3: 146. https://doi.org/10.3390/universe10030146
APA StyleScuderi, S., on behalf of the ASTRI Project. (2024). The ASTRI Mini-Array: A New Pathfinder for Imaging Cherenkov Telescope Arrays. Universe, 10(3), 146. https://doi.org/10.3390/universe10030146