Higher Time-Derivative Theories from Space–Time Interchanged Integrable Field Theories
Abstract
:1. Introduction
2. Ostrogradsky’s Method for Scalar Field Theories
2.1. Lorentz Invariant Formulation
2.2. Nonrelativistic Formulation
2.3. Higher Time-Derivative Theories in Disguise as Multi-Field Theories
2.4. Higher Time-Derivative Hamiltonians from Space–Time Rotated Higher Charges
3. Canonical Higher Time-Derivative Hamiltonians
3.1. Standard Hamiltonian for Modified KdV Systems, Generic n
3.2. Rotated Standard Hamiltonian for Modified KdV Systems, Generic n
3.3. xt-Rotated First Higher Charge Hamiltonians for the KdV System,
3.3.1. Multi-Field Theory
3.3.2. Integrability from Painlevé Test
3.4. xt-Rotated First Higher Charge Hamiltonians for the KdV System,
Integrability from Painlevé Test
4. Exact Benign and Malevolent Solutions and Their Classical Energies
4.1. Exact Solutions for the Rotated -mKdV Equations of Motion
4.2. Exact Solutions for the Rotated -mKdV Equations of Motion
4.3. Exact Solutions for the Rotated -mKdV Equations of Motion
4.4. Exact Solutions for the Rotated Higher Charge -mKdV Systems
5. Quantization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Superposition Principle for the Solutions of the Rotated KdV
References
- Ostrogradsky, M. Mémoire sur les Équations Différentielles Relatives an Probléme des Isopérimétres; Mémoires de l’Académie Impériale des Sciences VI; l’Académie Impériale des Sciences: St. Petersbourg, Russia, 1850; Volume 4. [Google Scholar]
- Woodard, R.P. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 2015, 10, 32243. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of higher-derivative quantum gravity. Phys. Rev. D 1977, 16, 953. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Adler, S.L. Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 1982, 54, 729. [Google Scholar] [CrossRef]
- Smilga, A. Spontaneous generation of the Newton constant in the renormalizable gravity theory. arXiv 1982, arXiv:1406.5613. [Google Scholar]
- Modesto, L.; Shapiro, I.L. Superrenormalizable quantum gravity with complex ghosts. Phys. Lett. B 2016, 755, 279–284. [Google Scholar] [CrossRef]
- Chen, T.-J.; Fasiello, M.; Lim, E.A.; Tolley, A.J. Higher derivative theories with constraints: Exorcising Ostrogradski’s Ghost. J. Cosmol. Astropart. Phys. 2013, 2013, 042. [Google Scholar] [CrossRef]
- Salvio, A.; Strumia, A. Quantum mechanics of 4-derivative theories. Eur. Phys. J. C 2016, 76, 227. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, D. Fakeons and Lee-Wick models. J. High Energy Phys. 2018, 2018, 141. [Google Scholar] [CrossRef]
- Bender, C.M.; Mannheim, P.D. No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. Phys. Rev. Lett. 2008, 100, 110402. [Google Scholar] [CrossRef]
- Raidal, M.; Veermäe, H. On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost. Nucl. Phys. B 2017, 916, 607–626. [Google Scholar] [CrossRef]
- Smilga, A. Classical and quantum dynamics of higher-derivative systems. J. Mod. Phys. A 2017, 32, 1730025. [Google Scholar] [CrossRef]
- Smilga, A. On exactly solvable ghost-ridden systems. Phys. Lett. A 2021, 389, 127104. [Google Scholar] [CrossRef]
- Damour, T.; Smilga, A. Dynamical systems with benign ghosts. Phys. Rev. D 2022, 105, 045018. [Google Scholar] [CrossRef]
- Smilga, A. Benign ghosts in higher-derivative systems. J. Phys. Conf. Ser. 2021, 2028, 012023. [Google Scholar] [CrossRef]
- Hawking, S.W.; Hertog, T. Living with ghosts. Phys. Rev. D 2002, 65, 103515. [Google Scholar] [CrossRef]
- Biswas, T.; Koivisto, T.; Mazumdar, A. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [Google Scholar] [CrossRef]
- Weldon, H.A. Finite-temperature retarded and advanced fields. Nucl. Phys. B 1998, 534, 467–490. [Google Scholar] [CrossRef]
- Mignemi, S.; Wiltshire, D.L. Black holes in higher-derivative gravity theories. Phys. Rev. D 1992, 46, 1475. [Google Scholar] [CrossRef]
- Rivelles, V.O. Triviality of higher derivative theories. Phys. Lett. B 2003, 577, 137–142. [Google Scholar] [CrossRef]
- Kaparulin, D.S.; Lyakhovich, S.L.; Sharapov, A.A. BRST analysis of general mechanical systems. J. Geo. Phys. 2013, 74, 164–184. [Google Scholar] [CrossRef]
- Plyushchay, M.S. Massless point particle with rigidity. Mod. Phys. Lett. A 1989, 4, 837–847. [Google Scholar] [CrossRef]
- Plyushchay, M.S. Massless particle with rigidity as a model for the description of bosons and fermions. Phys. Lett. B 1990, 243, 383–388. [Google Scholar] [CrossRef]
- Dine, M.; Seiberg, N. Comments on higher derivative operators in some SUSY field theories. Phys. Lett. B 1997, 409, 239–244. [Google Scholar] [CrossRef]
- Smilga, A. Ultraviolet divergences in non-renormalizable supersymmetric theories. Phys. Part. Nucl. Lett. 2017, 14, 245–260. [Google Scholar] [CrossRef]
- Pavšič, M. Stable self-interacting Pais–Uhlenbeck oscillator. Mod. Phys. Lett. A 2013, 28, 1350165. [Google Scholar] [CrossRef]
- Kaparulin, D.S.; Lyakhovich, S.L.; Sharapov, A.A. Classical and quantum stability of higher-derivative dynamics. Eur. Phys. J. C 2014, 74, 3072. [Google Scholar] [CrossRef]
- Avendano-Camacho, M.; Vallejo, J.A.; Vorobiev, Y. A perturbation theory approach to the stability of the Pais-Uhlenbeck oscillator. J. Math. Phys. 2017, 58, 093501. [Google Scholar] [CrossRef]
- Boulanger, N.; Buisseret, F.; Dierick, F.; White, O. Higher-derivative harmonic oscillators: Stability of classical dynamics and adiabatic invariants. Eur. Phys. J. C 2019, 79, 60. [Google Scholar] [CrossRef]
- Deffayet, C.; Mukohyama, S.; Vikman, A. Ghosts without runaway instabilities. Phys. Rev. Lett. 2022, 128, 041301. [Google Scholar] [CrossRef]
- Deffayet, C.; Held, A.; Mukohyama, S.; Vikman, A. Global and local stability for ghosts coupled to positive energy degrees of freedom. J. Cosmol. Astropart. Phys. 2023, 2023, 031. [Google Scholar] [CrossRef]
- Fring, A.; Turner, B. Higher derivative Hamiltonians with benign ghosts from affine Toda lattices. J. Phys. A Math. Theor. 2023, 56, 295203. [Google Scholar] [CrossRef]
- Fring, A.; Turner, B. Integrable scattering theory with higher derivative Hamiltonians. Eur. Phys. J. Plus 2023, 138, 1136. [Google Scholar] [CrossRef]
- Motohashi, H.; Suyama, T. Quantum Ostrogradsky theorem. J. High Energy Phys. 2020, 2020, 32. [Google Scholar] [CrossRef]
- De Urries, F.J.; Julve, J. Ostrogradski formalism for higher-derivative scalar field theories. J. Phys. A Math. Gen. 1998, 31, 6949. [Google Scholar] [CrossRef]
- Thibes, R. Natural higher-derivatives generalization for the Klein–Gordon equation. Mod. Phys. Lett. A 2021, 36, 2150205. [Google Scholar] [CrossRef]
- Weldon, H.A. Quantization of higher-derivative field theories. Ann. Phys. 2003, 305, 137–150. [Google Scholar] [CrossRef]
- Nutku, Y. Hamiltonian formulation of the KdV equation. J. Math. Phys. 1984, 25, 2007–2008. [Google Scholar] [CrossRef]
- Bowtell, G.; Stuart, A.E.G. A particle representation for the Korteweg-de Vries solitons. J. Math. Phys. 1983, 24, 969–981. [Google Scholar] [CrossRef]
- Miura, R.M. The Korteweg-de Vries Equation: A Survey of Results. SIAM Rev. 1976, 18, 412–459. [Google Scholar] [CrossRef]
- Painlevé, P. Mémoire sur les équations différentielles dont l’intégrale générale est uniforme. Bull. Soc. Math. Fr. 1900, 28, 201–261. [Google Scholar] [CrossRef]
- Ablowitz, M.; Ramani, A.; Segur, H. A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. J. Math. Phys. 1980, 21, 1006–1015. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Weiss, J. The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 1983, 24, 1405–1413. [Google Scholar] [CrossRef]
- Kruskal, M.; Joshi, N.; Halburd, R. Analytic and Asymptotic Methods for Nonlinear Singularity Analysis. Lect. Notes Phys. 2004, 638, 175–208. [Google Scholar]
- Grammaticos, B.; Ramani, A. Integrability- and How to detect it. Lect. Notes Phys. 2004, 638, 31–94. [Google Scholar]
- Liang, C.; Yong, X.; Liu, Z.; Han, J. The extended Jacobian Elliptic function expansion method and its application to nonlinear wave equations. Fizika A 2003, 12, 161–170. [Google Scholar]
- Nesterenko, V.V. Instability of classical dynamics in theories with higher derivatives. Phys. Rev. D 2007, 75, 087703. [Google Scholar] [CrossRef]
- Szegleti, A.; Márkus, F. Dissipation in Lagrangian formalism. Entropy 2020, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J. A dual-oscillator approach to complex-stiffness damping based on fourth-order dynamics. Nonlin. Dan. 2022, 109, 285–301. [Google Scholar] [CrossRef]
- Fring, A.; Taira, T. Complex BPS solitons with real energies from duality. J. Phys. A Math. Theor. 2020, 53, 455701. [Google Scholar] [CrossRef]
- Smilga, A. Modified Korteweg-de Vries equation as a system with benign ghosts. Acta Pol. 2022, 61, 190–196. [Google Scholar] [CrossRef]
- Wadati, M. Bäcklund transformation for solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1974, 36, 1498. [Google Scholar] [CrossRef]
- Schiff, J. Bäcklund transformations of MKdV and Painleve equations. Nonlinearity 1994, 7, 305. [Google Scholar] [CrossRef]
- Arancibia, A.; Correa, F.; Jakubskỳ, V.; Guilarte, J.M.; Plyushchay, M.S. Soliton defects in one-gap periodic system and exotic supersymmetry. Phys. Rev. D 2014, 90, 125041. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformation and Solitons; Springer: Berlin, Germany, 1991. [Google Scholar]
- Bianchi, L. Vorlesungen über Differentialgeometrie; Teubner: Leipzig, Germany, 1927. [Google Scholar]
- Lamb, G.L., Jr. Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Mod. Phys. 1971, 43, 99–124. [Google Scholar] [CrossRef]
- Dunne, G.; Feinberg, J. Self-isospectral periodic potentials and supersymmetric quantum mechanics. Phys. Rev. D 1998, 57, 1271. [Google Scholar] [CrossRef]
- Cen, J.; Correa, F.; Fring, A. Degenerate multi-solitons in the sine-Gordon equation. J. Phys. A Math. Theor. 2017, 50, 435201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fring, A.; Taira, T.; Turner, B. Higher Time-Derivative Theories from Space–Time Interchanged Integrable Field Theories. Universe 2024, 10, 198. https://doi.org/10.3390/universe10050198
Fring A, Taira T, Turner B. Higher Time-Derivative Theories from Space–Time Interchanged Integrable Field Theories. Universe. 2024; 10(5):198. https://doi.org/10.3390/universe10050198
Chicago/Turabian StyleFring, Andreas, Takano Taira, and Bethan Turner. 2024. "Higher Time-Derivative Theories from Space–Time Interchanged Integrable Field Theories" Universe 10, no. 5: 198. https://doi.org/10.3390/universe10050198
APA StyleFring, A., Taira, T., & Turner, B. (2024). Higher Time-Derivative Theories from Space–Time Interchanged Integrable Field Theories. Universe, 10(5), 198. https://doi.org/10.3390/universe10050198