PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation
Abstract
:1. Introduction
- FHI is tied to a renormalizable superpotential uniquely determined by a gauge and global R symmetries.
- FHI does not require fine-tuned parameters and trans-Planckian inflaton values.
- FHI can be reconciled with the Planck data [6]—fitted to the standard power-law cosmological model with Cold Dark Matter (CDM) and a cosmological constant (CDM)—if we properly take into account not only radiative corrections (RCs) but also corrections originating from supergravity (SUGRA) [7,8,9,10,11,12,13,14], as well as soft SUSY-breaking terms [15,16,17,18,19,20,21,22].
- FHI can be naturally followed by a Grand Unified Theory (GUT) phase transition, which may lead to the production of cosmological defects, if these are predicted by the symmetry-breaking scheme. In the large majority of GUT-breaking chains, the formation [23] of cosmic strings (CSs) cannot be avoided.
- The R charge of the goldstino superfield—which is related to the geometry of the HS [47]—is constrained to values with .
- The sgoldstino is stabilized [49,50,51,52,53,54] to low values during FHI. This fact, together with the selection of a minimal Kähler potential for the inflaton, assists us in resolving the -problem. Note that Kähler potentials inspired by string theory were mainly employed in earlier works [48,49,50,51,52,53,54].
- The energy density of the universe is dominated by the energy density of the sgoldstino condensate, which decays [61,62,63,64,65] before the onset of Big Bang Nucleosynthesis (BBN) at cosmic temperatures of – [66] thanks to the aforementioned term. Therefore, our scenario naturally results in prolonged matter domination, which causes a reduction [67,68,69,70] in the spectra of GWs at high frequencies (). This fact is welcome since it assists us in avoiding any conflicts with the third run of advanced LIGO-VIRGO-KAGRA (LVK) data [71].
- The SUSY mass scale is predicted to be close to the scale [72]. It fits well with the Higgs boson mass, discovered at the LHC, as it is estimated [73] within high-scale SUSY if we assume a relatively low and stop mixing. Note that the connection of inflation with SUSY breaking has been extensively discussed in the literature [74,75,76,77,78,79,80,81] over the last several years.
2. Model Set-Up
2.1. Superpotential
2.2. Kähler Potential
3. SUSY and Breaking—Dark Energy
4. Inflation Analysis
4.1. Hidden Sector’s Stabilization
4.2. Inflationary Potential
4.3. Observational Requirements
4.4. Results
5. Reheating Process
6. Metastable CSs and Early Matter Domination
6.1. CS Tension
6.2. GWs from Metastable CSs with Low Reheating
7. Predictions for the SUSY Mass Scale
8. Conclusions
- Observationally acceptable FHI of the hilltop type, adjusting the tadpole parameter and the -breaking scale M in the ranges of Equation (30).
- A prediction of the SUSY mass scale , which turns out to be on the order of PeV.
- An interpretation of the DE problem without extensive tuning. We obtain ∼ in Equation (2c).
- An explanation of the term of the MSSM with ∼ (see Equation (6a)) by invoking an appropriate modification of the Giudice–Masiero mechanism.
- Reheating generated due to the domination of the sgoldstino condensate after the end of FHI. Since is on the order of PeV, the resulting is higher than its lower bound from BBN.
- CSs that, if metastable, explain the recent observations on GWs rather well. A characteristic of the obtained spectra is their suppression at relatively large frequencies (), which is due to the long-lasting matter domination caused by sgoldstino oscillations.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAO: | Baryon Acoustic Oscillations |
BBN: | Big Bang Nucleosynthesis |
BPA, B: | Benchmark point A, B |
CDM: | Cold Dark Matter |
CMB: | Cosmic microwave background |
CS: | Cosmic string |
DE: | Dark Energy |
dS: | de Sitter |
FHI: | F-term hybrid inflation |
GUT: | Grand Unified Theory |
GW: | Gravitational wave |
HS: | Hidden sector |
LVK: | LIGO-VIRGO-KAGRA |
IS: | Inflationary sector |
MSSM: | Minimal SUSY SM |
NANOGrav15: | NANOGrav 15-year results |
RCs: | Radiative corrections |
SM: | Standard Model |
SUSY: | Supersymmetry |
SUGRA: | Supergravity |
v.e.v: | Vacuum expectation value |
Appendix A. Dirac and Majorana Masses of Neutrinos
References
- Dvali, G.R.; Shafi, Q.; Schaefer, R.K. Large scale structure and supersymmetric inflation without fine tuning. Phys. Rev. D 1994, 73, 1886–1889. [Google Scholar] [CrossRef]
- Pallis, C. Reducing the Spectral Index in F-Term Hybrid Inflation; Harrison, T.P., Gonzales, R.N., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2008. [Google Scholar]
- Armillis, R.; Pallis, C. Implementing Hilltop F-term Hybrid Inflation in Supergravity. In Recent Advances in Cosmology; Travena, A., Soren, B., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2013. [Google Scholar]
- Lazarides, G. Inflationary cosmology. Lect. Notes Phys. 2002, 592, 351–391. [Google Scholar]
- Lazarides, G. Basics of inflationary cosmology. J. Phys. Conf. Ser. 2006, 53, 528–550. [Google Scholar] [CrossRef]
- Akrami, Y. et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Panagiotakopoulos, C. Hybrid inflation in supergravity with (SU(1, 1)/U(1))m Kähler manifolds. Phys. Lett. B 1999, 459, 473–481. [Google Scholar] [CrossRef]
- Panagiotakopoulos, C. Realizations of hybrid inflation in supergravity with natural initial conditions. Phys. Rev. D 2005, 71, 063516. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; King, S.F.; Shafi, Q. Supersymmetric Hybrid Inflation with Non-Minimal Kähler potential. Phys. Lett. B 2007, 651, 345–351. [Google Scholar] [CrossRef]
- Garbrecht, B.; Pallis, C.; Pilatsis, A. Anatomy of F(D)-Term Hybrid Inflation. J. High Energy Phys. 2006, 12, 038. [Google Scholar] [CrossRef]
- Rehman, M.U.; Şenoğuz, V.N.; Shafi, Q. Supersymmetric And Smooth Hybrid Inflation In The Light Of WMAP3. Phys. Rev. D 2007, 75, 043522. [Google Scholar] [CrossRef]
- Pallis, C. Kähler Potentials for Hilltop F-Term Hybrid Inflation. J. Cosmol. Astropart. Phys. 2009, 4, 024. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafi, Q.; Wickman, J.R. Observable Gravity Waves from Supersymmetric Hybrid Inflation II. Phys. Rev. D 2011, 83, 067304. [Google Scholar] [CrossRef]
- Civiletti, M.; Pallis, C.; Shafi, Q. Upper Bound on the Tensor-to-Scalar Ratio in GUT-Scale Supersymmetric Hybrid Inflation. Phys. Lett. B 2014, 733, 276–282. [Google Scholar] [CrossRef]
- Şenoğuz, V.N.; Shafi, Q. Reheat temperature in supersymmetric hybrid inflation models. Phys. Rev. D 2005, 71, 043514. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafi, Q.; Wickman, J.R. Supersymmetric Hybrid Inflation Redux. Phys. Lett. B 2010, 683, 191. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafi, Q.; Wickman, J.R. Minimal Supersymmetric Hybrid Inflation, Flipped SU(5) and Proton Decay. Phys. Lett. B 2010, 688, 75–81. [Google Scholar] [CrossRef]
- Nakayama, K.; Takahashi, F.; Yanagida, T.T. Constraint on the gravitino mass in hybrid inflation. J. Cosmol. Astropart. Phys. 2010, 12, 10. [Google Scholar] [CrossRef]
- Pallis, C.; Shafi, Q. Update on Minimal Supersymmetric Hybrid Inflation in Light of PLANCK. Phys. Lett. B 2013, 725, 327–333. [Google Scholar] [CrossRef]
- Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K. Hybrid Inflation in the Complex Plane. J. Cosmol. Astropart. Phys. 2014, 7, 54. [Google Scholar] [CrossRef]
- Ahmed, W.; Raza, S. Supersymmetric Hybrid Inflation in Light of CMB Experiments and Swampland Conjectures. arXiv 2024, arXiv:2401.02168. [Google Scholar]
- Pallis, C.; Shafi, Q. From Hybrid to Quadratic Inflation with High-Scale Supersymmetry Breaking. Phys. Lett. B 2014, 736, 261–266. [Google Scholar] [CrossRef]
- Jeannerot, R.; Rocher, J.; Sakellariadou, M. How generic is cosmic string formation in SUSY GUTs. Phys. Rev. D 2003, 68, 103514. [Google Scholar] [CrossRef]
- Pallis, C. Gravitational Waves, μ Term & Leptogenesis from B − L Higgs Inflation in Supergravity. Universe 2018, 4, 13. [Google Scholar] [CrossRef]
- Antoniadis, J. et al. [EPTA Collaboration] The second data release from the European Pulsar Timing Array—III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Agazie, G. et al. [NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Afzal, A. et al. [NANOGrav Collaboration] The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
- Buchmüller, W. Metastable strings and dumbbells in supersymmetric hybrid inflation. J. Cosmol. Astropart. Phys. 2021, 4, 168. [Google Scholar] [CrossRef]
- Maji, R.; Park, W.-I.; Shafi, Q. Gravitational waves from walls bounded by strings in SO(10) model of pseudo-Goldstone dark matter. Phys. Lett. B 2023, 845, 138127. [Google Scholar] [CrossRef]
- Antusch, S.; Hinze, K.; Saad, S.; Steiner, J. Singling out SO(10) GUT models using recent PTA results. Phys. Rev. D 2023, 108, 095053. [Google Scholar] [CrossRef]
- Fu, B.; King, S.F.; Marsili, L.; Pascoli, S.; Turner, J.; Zhou, Y.-L. Testing Realistic SO(10) SUSY GUTs with Proton Decay and Gravitational Waves. Phys. Rev. D 2024, 109, 055025. [Google Scholar] [CrossRef]
- King, S.F.; Leontaris, G.K.; Zhou, Y.L. Flipped SU(5): Unification, proton decay, fermion masses and gravitational waves. J. High Energy Phys. 2024, 3, 6. [Google Scholar] [CrossRef]
- Ahmed, W.; Junaid, M.; Nasri, S.; Zubair, U. Constraining the cosmic strings gravitational wave spectra in no-scale inflation with viable gravitino dark matter and nonthermal leptogenesis. Phys. Rev. D 2022, 105, 115008. [Google Scholar] [CrossRef]
- Ahmed, W.; Chowdhury, T.A.; Nasri, S.; Saad, S. Gravitational waves from metastable cosmic strings in Pati-Salam model in light of new pulsar timing array data. Phys. Rev. D 2024, 109, 015008. [Google Scholar] [CrossRef]
- Ahmed, W.; Rehman, M.U.; Zubair, U. Probing Stochastic Gravitational Wave Background from SU(5) × U(1) Strings in Light of NANOGrav 15-Year Data. J. Cosmol. Astropart. Phys. 2024, 1, 49. [Google Scholar] [CrossRef]
- Lazarides, G.; Maji, R.; Moursy, A.; Shafi, Q. Inflation, superheavy metastable strings and gravitational waves in non-supersymmetric flipped SU(5). J. Cosmol. Astropart. Phys. 2024, 3, 6. [Google Scholar] [CrossRef]
- Afzal, A.; Mehmood, M.; Rehman, M.U.; Shafi, Q. Supersymmetric hybrid inflation and metastable cosmic strings in SU(4)c × SU(2)L × U(1)R. arXiv 2023, arXiv:2308.11410. [Google Scholar]
- Buchmüller, W.; Domcke, V.; Schmitz, K. From NANOGrav to LIGO with metastable cosmic strings. Phys. Lett. B 2020, 811, 135914. [Google Scholar] [CrossRef]
- Buchmüller, W.; Domcke, V.; Schmitz, K. Metastable cosmic strings. J. Cosmol. Astropart. Phys. 2023, 11, 20. [Google Scholar] [CrossRef]
- Lazarides, G.; Maji, R.; Shafi, Q. Gravitational waves from quasi-stable strings. J. Cosmol. Astropart. Phys. 2022, 8, 42. [Google Scholar] [CrossRef]
- Lazarides, G.; Maji, R.; Shafi, Q. Superheavy quasistable strings and walls bounded by strings in the light of NANOGrav 15 year data. Phys. Rev. D 2023, 108, 095041. [Google Scholar] [CrossRef]
- Buchmüller, W.; Domcke, V.; Schmitz, K. Spontaneous B-L Breaking as the Origin of the Hot Early Universe. Nucl. Phys. 2012, B862, 587. [Google Scholar] [CrossRef]
- Lazarides, G.; Pallis, C. Probing the Supersymmetry-Mass Scale With F-term Hybrid Inflation. Phys. Rev. D 2023, 108, 095055. [Google Scholar] [CrossRef]
- Pallis, C. Gravity-mediated SUSY breaking, R symmetry, and hyperbolic Kähler geometry. Phys. Rev. D 2019, 100, 055013. [Google Scholar] [CrossRef]
- Pallis, C. SUSY-breaking scenarios with a mildly violated R symmetry. Eur. Phys. J. C 2021, 81, 804. [Google Scholar] [CrossRef]
- Wu, L.; Hu, S.; Li, T. No-Scale μ-Term Hybrid Inflation. Eur. Phys. J. C 2017, 77, 168. [Google Scholar] [CrossRef]
- Buchmüller, W.; Covi, L.; Delepine, D. Inflation and supersymmetry breaking. Phys. Lett. B 2000, 491, 183. [Google Scholar] [CrossRef]
- Antusch, S.; Bastero-Gil, M.; Dutta, K.; King, S.F.; Kostka, P.M. Solving the eta-Problem in Hybrid Inflation with Heisenberg Symmetry and Stabilized Modulus. J. Cosmol. Astropart. Phys. 2009, 1, 040. [Google Scholar] [CrossRef]
- Higaki, T.; Jeong, K.S.; Takahashi, F. Hybrid inflation in high-scale supersymmetry. J. Cosmol. Astropart. Phys. 2012, 12, 111. [Google Scholar] [CrossRef]
- Brax, P.; Bruck, C.v.; Davis, A.C.; Davis, S.C. Coupling hybrid inflation to moduli. J. Cosmol. Astropart. Phys. 2006, 9, 012. [Google Scholar] [CrossRef]
- Davis, S.C.; Postm, M.A. Successfully combining SUGRA hybrid inflation and moduli stabilisation. J. Cosmol. Astropart. Phys. 2008, 4, 22. [Google Scholar]
- Mooij, S.; Postma, M. Hybrid inflation with moduli stabilization and low scale supersymmetry breaking. J. Cosmol. Astropart. Phys. 2010, 6, 12. [Google Scholar] [CrossRef]
- Bae, K.J.; Baer, H.; Barger, V.; Sengupta, D. Revisiting the SUSY μ problem and its solutions in the LHC era. Phys. Rev. D 2019, 99, 115027. [Google Scholar] [CrossRef]
- Giudice, G.F.; Masiero, A. A Natural Solution to the mu Problem in Supergravity Theories. Phys. Lett. B 1988, 206, 480. [Google Scholar] [CrossRef]
- Brignole, A.; Ibanez, L.E.; Munoz, C. Soft supersymmetry breaking terms from supergravity and superstring models. Adv. Ser. Direct. High Energy Phys. 1998, 18, 125. [Google Scholar]
- Okada, N.; Shafi, Q. μ-term hybrid inflation and split supersymmetry. Phys. Lett. B 2017, 775, 348–351. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafi, Q.; Vardag, F.K. μ-Hybrid Inflation with Low Reheat Temperature and Observable Gravity Waves. Phys. Rev. D 2017, 96, 063527. [Google Scholar] [CrossRef]
- Dvali, G.R.; Lazarides, G.; Shafi, Q. Mu problem and hybrid inflation in supersymmetric SU(2)L × SU(2)R × U(1)B−L. Phys. Lett. B 1998, 424, 259. [Google Scholar] [CrossRef]
- Kane, G.; Sinha, K.; Watson, S. Cosmological Moduli and the Post-Inflationary Universe: A Critical Review. Int. J. Mod. Phys. D 2015, 24, 1530022. [Google Scholar] [CrossRef]
- Bae, K.J.; Baer, H.; Barger, V.; Deal, R.W. The cosmological moduli problem and naturalness. J. High Energy Phys. 2022, 2, 138. [Google Scholar] [CrossRef]
- Endo, M.; Takahashi, F.; Yanagida, T.T. Inflaton Decay in Supergravity. Phys. Rev. D 2007, 76, 083509. [Google Scholar] [CrossRef]
- Ellis, J.; Garcia, M.; Nanopoulos, D.; Olive, K. Phenomenological Aspects of No-Scale Inflation Models. J. Cosmol. Astropart. Phys. 2015, 10, 3. [Google Scholar] [CrossRef]
- Aldabergenov, Y.; Antoniadis, I.; Chatrabhuti, A.; Isono, H. Reheating after inflation by supersymmetry breaking. Eur. Phys. J. C 2021, 81, 1078. [Google Scholar] [CrossRef]
- Hasegawa, T.; Hiroshima, N.; Kohri, K.; Hansen, R.S.; Tram, T.; Hannestad, S. MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. J. Cosmol. Astropart. Phys. 2019, 12, 012. [Google Scholar] [CrossRef]
- Cui, Y.; Lewicki, M.; Morrissey, D.E.; Wells, J.D. Probing the pre-BBN universe with gravitational waves from cosmic strings. J. High Energy Phys. 2019, 1, 81. [Google Scholar] [CrossRef]
- Gouttenoire, Y.; Servant, G.; Simakachorn, P. Beyond the Standard Models with Cosmic Strings. J. Cosmol. Astropart. Phys. 2020, 7, 32. [Google Scholar] [CrossRef]
- Chang, C.F.; Cui, Y. Gravitational waves from global cosmic strings and cosmic archaeology. J. Cosmol. Astropart. Phys. 2022, 3, 114. [Google Scholar] [CrossRef]
- Auclair, P.; Blanco-Pillado, J.J.; Figueroa, D.G.; Jenkins, A.C.; Lewicki, M.; Sakellariadou, M.; Sanidas, S.; Sousa, L.; Steer, D.A.; Wachter, J.M.; et al. Probing the gravitational wave background from cosmic strings with LISA. J. Cosmol. Astropart. Phys. 2020, 4, 34. [Google Scholar] [CrossRef]
- Abbott, R. et al. [LIGO Scientific, Virgo and KAGRA Collaboration] Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. Phys. Rev. Lett. 2021, 126, 241102. [Google Scholar] [CrossRef]
- Wells, J.D. PeV-Scale Supersymmetry. Phys. Rev. D 2005, 71, 015013. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Giudice, G.F.; Slavich, P.; Strumia, A. Higgs Mass and Unnatural Supersymmetry. J. High Energy Phys. 2014, 9, 92. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Planck, LHC and α-attractors. Phys. Rev. D 2015, 91, 083528. [Google Scholar] [CrossRef]
- Romao, M.C.; King, S.F. Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term. J. High Energy Phys. 2017, 7, 33. [Google Scholar] [CrossRef]
- Harigaya, K.; Schmitz, K. Inflation from High-Scale Supersymmetry Breaking. Phys. Lett. B 2017, 773, 320. [Google Scholar] [CrossRef]
- Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R. Inflation from Supersymmetry Breaking. Eur. Phys. J. C 2017, 77, 724. [Google Scholar] [CrossRef]
- Dudas, E.; Gherghetta, T.; Mambrini, Y.; Olive, K.A. Inflation and High-Scale Supersymmetry with an EeV Gravitino. Phys. Rev. D 2017, 96, 115032. [Google Scholar] [CrossRef]
- Aldabergenov, Y.; Chatrabhuti, A.; Ketov, S.V. Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity. Eur. Phys. J. C 2019, 79, 713. [Google Scholar]
- Aldabergenov, Y.; Chatrabhuti, A.; Isono, H. α-attractors from supersymmetry breaking. Eur. Phys. J. C 2021, 81, 166. [Google Scholar] [CrossRef]
- Pallis, C. Inflection-point sgoldstino inflation in no-scale supergravity. Phys. Lett. B 2023, 843, 138018. [Google Scholar] [CrossRef]
- Abel, S.; Dedes, A.; Tamvakis, K. Naturally small Dirac neutrino masses in supergravity. Phys. Rev. D 2005, 71, 033003. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar]
- Tristram, M.; Banday, A.J.; Górski, K.M.; Keskitalo, R.; Lawrence, C.R.; Andersen, K.J.; Barreiro, R.; Borrill, J.; Colombo, L.; Eriksen, H.; et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef]
- Pallis, C. Massive particle decay and cold dark matter abundance. Astropart. Phys. 2004, 21, 689–702. [Google Scholar]
- Pallis, C. Cold Dark Matter in non-Standard Cosmologies, PAMELA, ATIC and Fermi LAT. Nucl. Phys. 2006, 751, 129. [Google Scholar] [CrossRef]
- Endo, M.; Hamaguchi, K.; Takahashi, F. Moduli-induced gravitino problem. Phys. Rev. Lett. 2006, 96, 211301. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Yamaguchi, M. Gravitino production from heavy moduli decay and cosmological moduli problem revived. Phys. Lett. B 2006, 638, 389–395. [Google Scholar] [CrossRef]
- Giudice, G.F.; Kolb, E.W.; Riotto, A. Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 2001, 64, 023508. [Google Scholar] [CrossRef]
- Pallis, C. Quintessential kination and cold dark matter abundance. J. Cosmol. Astropart. Phys. 2005, 10, 15. [Google Scholar] [CrossRef]
- Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. MicrOMEGAs: A Program for calculating the relic density in the MSSM. Comput. Phys. Commun. 2002, 149, 103–120. [Google Scholar] [CrossRef]
- Gondolo, P.; Edsjö, J.; Ullio, P.; Bergström, L.; Schelke, M.; Baltz, E.A. DarkSUSY: Computing supersymmetric dark matter properties numerically. J. Cosmol. Astropart. Phys. 2004, 7, 8. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Caprini, C.; Figueroa, D.G. Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav. 2018, 35, 163001. [Google Scholar] [CrossRef]
- Janssen, G.H.; Hobbs, G.; McLaughlin, M.; Bassa, C.G.; Deller, A.T.; Kramer, M.; Lee, K.J.; Mingarelli, C.M.F.; Rosado, P.A.; Sanidas, S.; et al. Gravitational wave astronomy with the SKA. arXiv 2014, arXiv:1501.00127. [Google Scholar]
- Boehm, C. et al. [Theia Collaboration] Theia: Faint objects in motion or the new astrometry frontier. arXiv 2017, arXiv:1707.01348. [Google Scholar]
- Sesana, A.; Korsakova, N.; Sedda, M.A.; Baibhav, V.; Barausse, E.; Barke, S.; Berti, E.; Bonetti, M.; Capelo, P.R.; Caprini, C.; et al. Unveiling the gravitational universe at μ − Hz frequencies. Exper. Astron. 2021, 51, 1333. [Google Scholar] [CrossRef]
- Amaro-Seoane, P. et al. [LISA Collaboration] Laser Interferometer Space Antenna. arXiv 2023, arXiv:1702.00786. [Google Scholar]
- Ruan, W.-H.; Guo, Z.-K.; Cai, R.-G.; Zhang, Y.-Z. Taiji program: Gravitational-wave sources. Int. J. Mod. Phys. A 2020, 35, 2050075. [Google Scholar] [CrossRef]
- Luo, J. et al. [TianQin Collaboration] TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef]
- Corbin, V.; Cornish, N.J. Detecting the cosmic gravitational wave background with the big bang observer. Class. Quant. Grav. 2006, 23, 2435–2446. [Google Scholar] [CrossRef]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 2001, 87, 221103. [Google Scholar] [CrossRef]
- Sathyaprakash, B.; Abernathy, M.; Acernese, F.; Ajith, P.; Allen, B.; Amaro-Seoane, P.; Andersson, N.; Aoudia, S.; Arun, K.; Astone, P.; et al. Scientific Objectives of Einstein Telescope. Class. Quant. Grav. 2012, 29, 124013, Erratum: Class. Quant. Grav. 2013, 30, 079501. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration] Exploring the Sensitivity of Next Generation Gravitational Wave Detectors. Class. Quant. Grav. 2017, 34, 044001. [Google Scholar] [CrossRef]
- Allahverdi, R.; Dutta, B.; Sinha, K. Baryogenesis and Late-Decaying Moduli. Phys. Rev. D 2010, 82, 035004. [Google Scholar] [CrossRef]
- Flores, M.M.; Kusenko, A.; Pearce, L.; White, G. Fireball baryogenesis from early structure formation due to Yukawa forces. Phys. Rev. D 2023, 108, 9. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Grigoriev, D.; Kusenko, A.; Shaposhnikov, M. Nonequilibrium electroweak baryogenesis from preheating after inflation. Phys. Rev. D 1999, 60, 123504. [Google Scholar] [CrossRef]
- Krauss, L.M.; Trodden, M. Baryogenesis below the electroweak scale. Phys. Rev. Lett. 1999, 83, 1502–1505. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Kolb, E.W.; Riotto, A. Nonthermal supermassive dark matter. Phys. Rev. Lett. 1998, 81, 4048–4051. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Kolb, E.W.; Riotto, A. Superheavy dark matter. Phys. Rev. D 1998, 59, 023501. [Google Scholar] [CrossRef]
- Goh, H.S.; Ibe, M. R-axion detection at LHC. J. High Energy Phys. 2009, 3, 49. [Google Scholar] [CrossRef]
- Hamada, Y.; Kamada, K.; Kobayashi, T.; Ookouchi, Y. More on cosmological constraints on spontaneous R-symmetry breaking models. J. Cosmol. Astropart. Phys. 2014, 1, 24. [Google Scholar] [CrossRef]
Superfields | Representations | Global Symmetries | ||
---|---|---|---|---|
under | ||||
Matter Superfields | ||||
0 | 0 | |||
0 | 0 | |||
0 | 0 | 1 | ||
0 | 0 | |||
0 | 0 | |||
0 | 0 | |||
Higgs Superfields | ||||
2 | 0 | 0 | ||
2 | 0 | 0 | ||
ine S | 2 | 0 | 0 | |
0 | 0 | |||
0 | 0 | 2 | ||
Goldstino Superfield | ||||
Z | 0 | 0 |
Benchmark | Benchmark | ||||
---|---|---|---|---|---|
Point: | A | B | Point: | A | B |
Inputs | |||||
ine | |||||
Inflationary Parameters | |||||
Observables | |||||
r | 6 | ||||
z v.e.v and Particle Spectrum | |||||
During FHI | at the Vacuum | ||||
2 | |||||
0.6 | |||||
Reheating Process | |||||
3 | 3 | 67 | |||
3 | 3 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallis, C. PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation. Universe 2024, 10, 211. https://doi.org/10.3390/universe10050211
Pallis C. PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation. Universe. 2024; 10(5):211. https://doi.org/10.3390/universe10050211
Chicago/Turabian StylePallis, Constantinos. 2024. "PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation" Universe 10, no. 5: 211. https://doi.org/10.3390/universe10050211
APA StylePallis, C. (2024). PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation. Universe, 10(5), 211. https://doi.org/10.3390/universe10050211