Gravitational Wormholes
Abstract
:1. Introduction
2. The Non-Linear ODE System
3. Series Solutions
3.1. Large-r Solution
3.2. Near-Throat Solution
4. Matching the Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
dS | de Sitter |
AdS | Anti-de Sitter |
ECG | Einsteinian Cubic Gravity |
GR | General Relativity |
GQTG | Generalized Quasitopological Gravity |
GSSS | General Static Spherically Symmetric |
ODE | Ordinary Differential Equation |
Appendix A. On-Shell Field Equations
Appendix B. Higher-Order Terms of Near-Throat Solutions
References
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics: Woodbury, NY, USA, 1995. [Google Scholar]
- Visser, M. From wormhole to time machine: Comments on Hawking’s chronology protection conjecture. Phys. Rev. D 1993, 47, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.H.; Roman, T.A. Quantum field theory constrains traversable wormhole geometries. Phys. Rev. D 1996, 53, 5496–5507. [Google Scholar] [CrossRef] [PubMed]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Modified-gravity wormholes without exotic matter. Phys. Rev. D 2013, 87, 067504. [Google Scholar] [CrossRef]
- Nandi, K.K.; Islam, A.; Evans, J. Brans wormholes. Phys. Rev. D 1997, 55, 2497–2500. [Google Scholar] [CrossRef]
- Yue, X.; Gao, S. Stability of Brans-Dicke thin shell wormholes. Phys. Lett. A 2011, 375, 2193–2200. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. General class of vacuum Brans-Dicke wormholes. Phys. Rev. D 2010, 81, 067501. [Google Scholar] [CrossRef]
- Sushkov, S.V.; Kozyrev, S.M. Composite vacuum Brans-Dicke wormholes. Phys. Rev. D 2011, 84, 124026. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 80, 104012. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 2010, 82, 104018. [Google Scholar] [CrossRef]
- Montelongo Garcia, N.; Lobo, F.S.N. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quant. Grav. 2011, 28, 085018. [Google Scholar] [CrossRef]
- Anabalon, A.; Oliva, J.; Quijada, C. Fully resonant scalars on asymptotically AdS wormholes. Phys. Rev. D 2019, 99, 104022. [Google Scholar] [CrossRef]
- Lovelock, D. Divergence-free tensorial concomitants. Aequationes Math. 1970, 4, 127–138. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Bhawal, B.; Kar, S. Lorentzian wormholes in Einstein-Gauss-Bonnet theory. Phys. Rev. D 1992, 46, 2464–2468. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, X.Y. Wormhole solution in D-dimensional Einstein and Lovelock theories. Il Nuovo Cimento B 1996, 111, 1101–1110. [Google Scholar] [CrossRef]
- Shang, Y.W.; Xu, J.J. Wormhole solution in Lovelock gravity theory. Chin. Phys. Lett. 1999, 16, 85–87. [Google Scholar] [CrossRef]
- Maeda, H.; Nozawa, M. Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2008, 78, 024005. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Dayyani, Z. Lorentzian wormholes in Lovelock gravity. Phys. Rev. D 2009, 79, 064010. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Lobo, F.S.N. Novel third-order Lovelock wormhole solutions. Phys. Rev. D 2016, 93, 124014. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Riazi, N. Cosmological wormholes in Lovelock gravity. Phys. Rev. D 2012, 85, 124022. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Kord Zangeneh, M.; Lobo, F.S.N. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 2015, 91, 084004. [Google Scholar] [CrossRef]
- Oliva, J.; Ray, S. A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function. Class. Quant. Grav. 2010, 27, 225002. [Google Scholar] [CrossRef]
- Myers, R.C.; Robinson, B. Black Holes in Quasi-topological Gravity. JHEP 2010, 08, 067. [Google Scholar] [CrossRef]
- Oliva, J.; Ray, S. Birkhoff’s Theorem in Higher Derivative Theories of Gravity. Class. Quant. Grav. 2011, 28, 175007. [Google Scholar] [CrossRef]
- Oliva, J.; Ray, S. Birkhoff’s Theorem in Higher Derivative Theories of Gravity II. Phys. Rev. D 2012, 86, 084014. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Bazrafshan, A.; Mann, R.B.; Mehdizadeh, M.R.; Ghanaatian, M.; Vahidinia, M.H. Black Holes in Quartic Quasitopological Gravity. Phys. Rev. D 2012, 85, 104009. [Google Scholar] [CrossRef]
- Cisterna, A.; Guajardo, L.; Hassaine, M.; Oliva, J. Quintic quasi-topological gravity. JHEP 2017, 4, 66. [Google Scholar] [CrossRef]
- Hennigar, R.A.; Kubizňák, D.; Mann, R.B. Generalized quasitopological gravity. Phys. Rev. D 2017, 95, 104042. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A. On black holes in higher-derivative gravities. Class. Quant. Grav. 2017, 34, 175008. [Google Scholar] [CrossRef]
- Ahmed, J.; Hennigar, R.A.; Mann, R.B.; Mir, M. Quintessential Quartic Quasi-topological Quartet. JHEP 2017, 5, 134. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A. Universal black hole stability in four dimensions. Phys. Rev. D 2017, 96, 024034. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Hennigar, R.A. (Generalized) quasi-topological gravities at all orders. Class. Quant. Grav. 2020, 37, 015002. [Google Scholar] [CrossRef]
- Hennigar, R.A. Criticality for charged black branes. JHEP 2017, 9, 82. [Google Scholar] [CrossRef]
- Mir, M.; Mann, R.B. On generalized quasi-topological cubic-quartic gravity: Thermodynamics and holography. JHEP 2019, 7, 12. [Google Scholar] [CrossRef]
- Mir, M.; Hennigar, R.A.; Ahmed, J.; Mann, R.B. Black hole chemistry and holography in generalized quasi-topological gravity. JHEP 2019, 8, 068. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, H.S.; Lu, H. Quasi-Topological Ricci Polynomial Gravities. JHEP 2018, 2, 166. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lu, H.; Wu, J.B. Causality and a-theorem Constraints on Ricci Polynomial and Riemann Cubic Gravities. Phys. Rev. D 2018, 97, 024023. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lu, H.; Mai, Z.F. Universal Structure of Covariant Holographic Two-Point Functions In Massless Higher-Order Gravities. JHEP 2018, 10, 063. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Moreno, J.; Murcia, A. All higher-curvature gravities as Generalized quasi-topological gravities. JHEP 2019, 11, 062. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A. Einsteinian cubic gravity. Phys. Rev. D 2016, 94, 104005. [Google Scholar] [CrossRef]
- Barriola, M.; Vilenkin, A. Gravitational Field of a Global Monopole. Phys. Rev. Lett. 1989, 63, 341. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.z. The Gravitational field of a global monopole. Class. Quant. Grav. 1991, 8, 761–767. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Yang, J.; Mann, R.B. Gravitational Wormholes. Universe 2024, 10, 257. https://doi.org/10.3390/universe10060257
Lu M, Yang J, Mann RB. Gravitational Wormholes. Universe. 2024; 10(6):257. https://doi.org/10.3390/universe10060257
Chicago/Turabian StyleLu, Mengqi, Jiayue Yang, and Robert B. Mann. 2024. "Gravitational Wormholes" Universe 10, no. 6: 257. https://doi.org/10.3390/universe10060257
APA StyleLu, M., Yang, J., & Mann, R. B. (2024). Gravitational Wormholes. Universe, 10(6), 257. https://doi.org/10.3390/universe10060257