Introduction to the Number of e-Folds in Slow-Roll Inflation
Abstract
:1. Introduction
2. Standard Slow-Roll Inflationary Dynamics
3. Hamilton–Jacobi Inflationary Dynamics
4. Slow-Roll Parameters, Inflationary Perturbations, and Observables
5. Definitions of the Number of -Folds
6. Inflaton Evolution and Number of e-Folds
7. Estimates of the Number of -Folds before the End of Inflation
8. Inflationary Observables and Number of -Folds
9. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.G. Supercooled Phase Transitions in the Very Early Universe. Phys. Lett. 1982, 110B, 35. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. 1983, 129B, 177. [Google Scholar] [CrossRef]
- Linde, A.D. Particle physics and inflationary cosmology. Contemp. Concepts Phys. 1990, 5, 1–362. [Google Scholar]
- Linde, A.D. Inflationary Cosmology. Lect. Notes Phys. 2008, 738, 1–54. [Google Scholar] [CrossRef]
- Olive, K.A. Inflation. Phys. Rept. 1990, 190, 307. [Google Scholar] [CrossRef]
- Baumann, D. INFLATION. Phys. Large Small 2011, 523–686. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe. Front. Phys. 1990, 69, 1–547. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005; ISBN 978-0-521-56398-7. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008; 593p. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory; World Scientific: Hackensack, NJ, USA, 2011; 489p. [Google Scholar] [CrossRef]
- Baumann, D. Primordial Cosmology. PoS 2018, TASI2017, 009. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Hawking, S.W. The Development of Irregularities in a Single Bubble Inflationary Universe. Phys. Lett. B 1982, 115, 295. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Phys. Lett. B 1982, 117, 175–178. [Google Scholar] [CrossRef]
- Guth, A.H.; Pi, S.Y. Fluctuations in the New Inflationary Universe. Phys. Rev. Lett. 1982, 49, 1110–1113. [Google Scholar] [CrossRef]
- Linde, A.D. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario. Phys. Lett. B 1982, 116, 335–339. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Steinhardt, P.J.; Turner, M.S. Spontaneous Creation of Almost Scale—Free Density Perturbations in an Inflationary Universe. Phys. Rev. D 1983, 28, 679. [Google Scholar] [CrossRef]
- Lyth, D.H. Large Scale Energy Density Perturbations and Inflation. Phys. Rev. D 1985, 31, 1792–1798. [Google Scholar] [CrossRef]
- Mukhanov, V.F. Gravitational Instability of the Universe Filled with a Scalar Field. JETP Lett. 1985, 41, 493–496. [Google Scholar]
- Sasaki, M. Large Scale Quantum Fluctuations in the Inflationary Universe. Prog. Theor. Phys. 1986, 76, 1036. [Google Scholar] [CrossRef]
- Stewart, E.D.; Lyth, D.H. A More accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation. Phys. Lett. B 1993, 302, 171–175. [Google Scholar] [CrossRef]
- Grishchuk, L.P. Amplification of gravitational waves in an istropic universe. Zh. Eksp. Teor. Fiz. 1974, 67, 825–838. [Google Scholar]
- Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Rubakov, V.A.; Sazhin, M.V.; Veryaskin, A.V. Graviton Creation in the Inflationary Universe and the Grand Unification Scale. Phys. Lett. B 1982, 115, 189–192. [Google Scholar] [CrossRef]
- Fabbri, R.; Pollock, M.d. The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation. Phys. Lett. B 1983, 125, 445–448. [Google Scholar] [CrossRef]
- Abbott, L.F.; Wise, M.B. Constraints on Generalized Inflationary Cosmologies. Nucl. Phys. B 1984, 244, 541–548. [Google Scholar] [CrossRef]
- Allen, B. The Stochastic Gravity Wave Background in Inflationary Universe Models. Phys. Rev. D 1988, 37, 2078. [Google Scholar] [CrossRef] [PubMed]
- Lucchin, F.; Matarrese, S.; Mollerach, S. The Gravitational wave contribution to CMB anisotropies and the amplitude of mass fluctuations from COBE results. Astrophys. J. Lett. 1992, 401, L49. [Google Scholar] [CrossRef]
- Turner, M.S.; White, M.J.; Lidsey, J.E. Tensor perturbations in inflationary models as a probe of cosmology. Phys. Rev. D 1993, 48, 4613–4622. [Google Scholar] [CrossRef]
- Crittenden, R.; Davis, R.L.; Steinhardt, P.J. Polarization of the microwave background due to primordial gravitational waves. Astrophys. J. Lett. 1993, 417, L13–L16. [Google Scholar] [CrossRef]
- Knox, L.; Turner, M.S. Detectability of tensor perturbations through CBR anisotropy. Phys. Rev. Lett. 1994, 73, 3347–3350. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.S. Detectability of inflation produced gravitational waves. Phys. Rev. D 1997, 55, R435–R439. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203–333. [Google Scholar] [CrossRef]
- Riotto, A. Inflation and the theory of cosmological perturbations. ICTP Lect. Notes Ser. 2003, 14, 317–413. [Google Scholar]
- Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S. Gravitational waves from inflation. Riv. Nuovo Cim. 2016, 39, 399–495. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Turner, M.S. A Prescription for Successful New Inflation. Phys. Rev. D 1984, 29, 2162–2171. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. COBE, gravitational waves, inflation and extended inflation. Phys. Lett. B 1992, 291, 391–398. [Google Scholar] [CrossRef]
- Liddle, A.R.; Parsons, P.; Barrow, J.D. Formalizing the slow roll approximation in inflation. Phys. Rev. D 1994, 50, 7222–7232. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia Inflationaris. Phys. Dark Univ. 2014, 5–6, 75–235. [Google Scholar] [CrossRef]
- Coughlan, G.D.; Ross, G.G. Initial Conditions for Inflation. Phys. Lett. B 1985, 157, 151–156. [Google Scholar] [CrossRef]
- Linde, A.D. Initial conditions for inflation. Phys. Lett. B 1985, 162, 281–286. [Google Scholar] [CrossRef]
- Albrecht, A.; Brandenberger, R.H. On the Realization of New Inflation. Phys. Rev. D 1985, 31, 1225. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, A.; Brandenberger, R.H.; Matzner, R. Numerical Analysis of Inflation. Phys. Rev. D 1985, 32, 1280. [Google Scholar] [CrossRef]
- Albrecht, A.; Brandenberger, R.H.; Matzner, R. Inflation with Generalized Initial Conditions. Phys. Rev. D 1987, 35, 429. [Google Scholar] [CrossRef] [PubMed]
- Kurki-Suonio, H.; Matzner, R.A.; Centrella, J.; Wilson, J.R. Inflation From Inhomogeneous Initial Data in a One-dimensional Back Reacting Cosmology. Phys. Rev. D 1987, 35, 435–448. [Google Scholar] [CrossRef]
- Goldwirth, D.S.; Piran, T. Inhomogeneity and the Onset of Inflation. Phys. Rev. Lett. 1990, 64, 2852–2855. [Google Scholar] [CrossRef]
- Goldwirth, D.S.; Piran, T. Initial conditions for inflation. Phys. Rept. 1992, 214, 223–291. [Google Scholar] [CrossRef]
- Kurki-Suonio, H.; Laguna, P.; Matzner, R.A. Inhomogeneous inflation: Numerical evolution. Phys. Rev. D 1993, 48, 3611–3624. [Google Scholar] [CrossRef]
- Iguchi, O.; Ishihara, H. Onset of inflation in inhomogeneous cosmology. Phys. Rev. D 1997, 56, 3216–3224. [Google Scholar] [CrossRef]
- Vachaspati, T.; Trodden, M. Causality and cosmic inflation. Phys. Rev. D 1999, 61, 023502. [Google Scholar] [CrossRef]
- Easther, R.; Price, L.C.; Rasero, J. Inflating an Inhomogeneous Universe. J. Cosmol. Astropart. Phys. 2014, 8, 41. [Google Scholar] [CrossRef]
- East, W.E.; Kleban, M.; Linde, A.; Senatore, L. Beginning inflation in an inhomogeneous universe. J. Cosmol. Astropart. Phys. 2016, 9, 10. [Google Scholar] [CrossRef]
- Lyth, D.H. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 1997, 78, 1861. [Google Scholar] [CrossRef]
- Efstathiou, G.; Mack, K.J. The Lyth bound revisited. J. Cosmol. Astropart. Phys. 2005, 2005, 008. [Google Scholar] [CrossRef]
- Easther, R.; Kinney, W.H.; Powell, B.A. The Lyth bound and the end of inflation. J. Cosmol. Astropart. Phys. 2006, 0608, 004. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Roest, D.; Scalisi, M.; Zavala, I. Can CMB data constrain the inflationary field range? J. Cosmol. Astropart. Phys. 2014, 1409, 006. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Roest, D.; Scalisi, M.; Zavala, I. Lyth bound of inflation with a tilt. Phys. Rev. D 2014, 90, 123539. [Google Scholar] [CrossRef]
- Marco, A.D. Lyth Bound, eternal inflation and future cosmological missions. Phys. Rev. D 2017, 96, 023511. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J.; Turner, M.S.; Wilczek, F. Reheating an Inflationary Universe. Phys. Rev. Lett. 1982, 48, 1437. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Linde, A.D. Baryon Asymmetry in Inflationary Universe. Phys. Lett. 1982, 116B, 329. [Google Scholar] [CrossRef]
- Abbott, L.F.; Farhi, E.; Wise, M.B. Particle Production in the New Inflationary Cosmology. Phys. Lett. 1982, 117B, 29. [Google Scholar] [CrossRef]
- Turner, M.S. Coherent Scalar Field Oscillations in an Expanding Universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Shtanov, Y. Scalar-field dynamics and reheating of the universe in chaotic inflation scenario. Ukr. Fiz. Zh. 1993, 38, 1425–1434. [Google Scholar]
- Marco, A.D.; Gasperis, G.D.; Pradisi, G.; Cabella, P. Energy Density, Temperature and Entropy Dynamics in Perturbative Reheating. Phys. Rev. D 2019, 100, 123532. [Google Scholar] [CrossRef]
- Marco, A.D.; Pradisi, G. Variable inflaton equation-of-state and reheating. Int. J. Mod. Phys. A 2021, 36, 2150095. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Kirilova, D.P. On Particle Creation by a Time Dependent Scalar Field. Sov. J. Nucl. Phys. 1990, 51, 172. [Google Scholar]
- Traschen, J.H.; Brandenberger, R.H. Particle Production During Out-of-equilibrium Phase Transitions. Phys. Rev. D 1990, 42, 2491. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Starobinsky, A.A. Reheating after inflation. Phys. Rev. Lett. 1994, 73, 3195. [Google Scholar] [CrossRef]
- Shtanov, Y.; Traschen, J.H.; Brandenberger, R.H. Universe reheating after inflation. Phys. Rev. D 1995, 51, 5438. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258. [Google Scholar] [CrossRef]
- Greene, P.B.; Kofman, L.; Linde, A.D.; Starobinsky, A.A. Structure of resonance in preheating after inflation. Phys. Rev. D 1997, 56, 6175–6192. [Google Scholar] [CrossRef]
- Greene, B.R.; Prokopec, T.; Roos, T.G. Inflaton decay and heavy particle production with negative coupling. Phys. Rev. D 1997, 56, 6484. [Google Scholar] [CrossRef]
- Greene, P.B.; Kofman, L. Preheating of fermions. Phys. Lett. B 1999, 448, 6–12. [Google Scholar] [CrossRef]
- Bassett, B.A.; Tsujikawa, S.; Wands, D. Inflation dynamics and reheating. Rev. Mod. Phys. 2006, 78, 537. [Google Scholar] [CrossRef]
- Frolov, A.V. Non-linear Dynamics and Primordial Curvature Perturbations from Preheating. Class. Quant. Grav. 2010, 27, 124006. [Google Scholar] [CrossRef]
- Allahverdi, R.; Brandenberger, R.; Cyr-Racine, F.Y.; Mazumdar, A. Reheating in Inflationary Cosmology: Theory and Applications. Ann. Rev. Nucl. Part. Sci. 2010, 60, 27–51. [Google Scholar] [CrossRef]
- Amin, M.A.; Hertzberg, M.P.; Kaiser, D.I.; Karouby, J. Nonperturbative Dynamics of Reheating After Inflation: A Review. Int. J. Mod. Phys. D 2014, 24, 1530003. [Google Scholar] [CrossRef]
- Lozanov, K.D. Lectures on Reheating after Inflation. arXiv 2019, arXiv:1907.04402. [Google Scholar]
- Belinsky, V.A.; Khalatnikov, I.M.; Grishchuk, L.P.; Zeldovich, Y.B. Inflationary stages in cosmological models with a scalar field. Phys. Lett. B 1985, 155, 232–236. [Google Scholar] [CrossRef]
- Guo, Z.K.; Piao, Y.S.; Cai, R.G.; Zhang, Y.Z. Inflationary attractor from tachyonic matter. Phys. Rev. D 2003, 68, 043508. [Google Scholar] [CrossRef]
- Urena-Lopez, L.A.; Reyes-Ibarra, M.J. On the dynamics of a quadratic scalar field potential. Int. J. Mod. Phys. D 2009, 18, 621–634. [Google Scholar] [CrossRef]
- Remmen, G.N.; Carroll, S.M. Attractor Solutions in Scalar-Field Cosmology. Phys. Rev. D 2013, 88, 083518. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Madsen, M.S. Exact scalar field cosmologies. Class. Quant. Grav. 1991, 8, 667–676. [Google Scholar] [CrossRef]
- Lidsey, J.E. The Scalar field as dynamical variable in inflation. Phys. Lett. B 1991, 273, 42–46. [Google Scholar] [CrossRef]
- Salopek, D.S.; Bond, J.R. Nonlinear evolution of long wavelength metric fluctuations in inflationary models. Phys. Rev. D 1990, 42, 3936–3962. [Google Scholar] [CrossRef]
- Muslimov, A.G. On the Scalar Field Dynamics in a Spatially Flat Friedman Universe. Class. Quant. Grav. 1990, 7, 231–237. [Google Scholar] [CrossRef]
- Barrow, J.D. Graduated inflationary universes. Phys. Lett. B 1990, 235, 40–43. [Google Scholar] [CrossRef]
- Barrow, J.D. New types of inflationary universe. Phys. Rev. D 1993, 48, 1585–1590. [Google Scholar] [CrossRef]
- Barrow, J.D. Exact inflationary universes with potential minima. Phys. Rev. D 1994, 49, 3055–3058. [Google Scholar] [CrossRef]
- Barrow, J.D.; Parsons, P. Inflationary models with logarithmic potentials. Phys. Rev. D 1995, 52, 5576–5587. [Google Scholar] [CrossRef] [PubMed]
- Lidsey, J.E.; Liddle, A.R.; Kolb, E.W.; Copeland, E.J.; Barreiro, T.; Abney, M. Reconstructing the inflation potential: An overview. Rev. Mod. Phys. 1997, 69, 373–410. [Google Scholar] [CrossRef]
- Smoot, G.F.; Bennett, C.L.; Kogut, A.; Wright, E.L.; Aymon, J.; Boggess, N.W.; Cheng, E.S.; De Amici, G.; Gulkis, S.; Hauser, M.G.; et al. Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. Lett. 1992, 396, L1–L5. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Ade, P.A.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.B.; Bischoff, C.A.; Beck, D.; Bock, J.J.; Boenish, H.; Bullock, E.; et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Liddle, A.R.; Leach, S.M. How long before the end of inflation were observable perturbations produced? Phys. Rev. D 2003, 68, 103503. [Google Scholar] [CrossRef]
- Germán, G.; Quaglia, R.G.; Colorado, A.M.M. Model independent bounds for the number of e-folds during the evolution of the universe. JCAP 2023, 03, 004. [Google Scholar] [CrossRef]
- Das, K.; Dutta, K.; Maharana, A. Inflationary Predictions and Moduli Masses. Phys. Lett. B 2015, 751, 195–200. [Google Scholar] [CrossRef]
- Cicoli, M.; Dutta, K.; Maharana, A.; Quevedo, F. Moduli Vacuum Misalignment and Precise Predictions in String Inflation. J. Cosmol. Astropart. Phys. 2016, 08, 006. [Google Scholar] [CrossRef]
- Maharana, A.; Zavala, I. Postinflationary scalar tensor cosmology and inflationary parameters. Phys. Rev. D 2018, 97, 123518. [Google Scholar] [CrossRef]
- Marco, A.D.; Pradisi, G.; Cabella, P. Inflationary scale, reheating scale, and pre-BBN cosmology with scalar fields. Phys. Rev. D 2018, 98, 123511. [Google Scholar] [CrossRef]
- Kawasaki, M.; Yamaguchi, M.; Yanagida, T. Natural chaotic inflation in supergravity. Phys. Rev. Lett. 2000, 85, 3572–3575. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F. Linear Inflation from Running Kinetic Term in Supergravity. Phys. Lett. B 2010, 693, 140–143. [Google Scholar] [CrossRef]
- Nakayama, K.; Takahashi, F. Running Kinetic Inflation. J. Cosmol. Astropart. Phys. 2010, 11, 009. [Google Scholar] [CrossRef]
- Nakayama, K.; Takahashi, F. Higgs Chaotic Inflation in Standard Model and NMSSM. J. Cosmol. Astropart. Phys. 2011, 02, 010. [Google Scholar] [CrossRef]
- Nakayama, K.; Takahashi, F. General Analysis of Inflation in the Jordan frame Supergravity. J. Cosmol. Astropart. Phys. 2010, 11, 039. [Google Scholar] [CrossRef]
- Harigaya, K.; Ibe, M.; Schmitz, K.; Yanagida, T.T. Chaotic Inflation with a Fractional Power-Law Potential in Strongly Coupled Gauge Theories. Phys. Lett. B 2013, 720, 125–129. [Google Scholar] [CrossRef]
- Silverstein, E.; Westphal, A. Monodromy in the CMB: Gravity Waves and String Inflation. Phys. Rev. D 2008, 78, 106003. [Google Scholar] [CrossRef]
- McAllister, L.; Silverstein, E.; Westphal, A. Gravity Waves and Linear Inflation from Axion Monodromy. Phys. Rev. D 2010, 82, 046003. [Google Scholar] [CrossRef]
- McAllister, L.; Silverstein, E.; Westphal, A.; Wrase, T. The Powers of Monodromy. J. High Energy Phys. 2014, 1409, 123. [Google Scholar] [CrossRef]
- Lucchin, F.; Matarrese, S. Power Law Inflation. Phys. Rev. D 1985, 32, 1316. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, J.J. Scalar Fields in Cosmology with an Exponential Potential. Phys. Lett. B 1987, 185, 341. [Google Scholar] [CrossRef]
- Burd, A.B.; Barrow, J.D. Inflationary Models with Exponential Potentials. Nucl. Phys. B 1988, 308, 929–945. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Universality Class in Conformal Inflation. J. Cosmol. Astropart. Phys. 2013, 1307, 002. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Multi-field Conformal Cosmological Attractors. J. Cosmol. Astropart. Phys. 2013, 1312, 006. [Google Scholar] [CrossRef]
- Ferrara, S.; Kallosh, R.; Linde, A.; Porrati, M. Minimal Supergravity Models of Inflation. Phys. Rev. D 2013, 88, 085038. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Superconformal generalizations of the Starobinsky model. J. Cosmol. Astropart. Phys. 2013, 1306, 028. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary α-Attractors. J. High Energy Phys. 2013, 1311, 198. [Google Scholar] [CrossRef]
- Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett. 2015, 114, 141302. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Escher in the Sky. Comptes Rendus Phys. 2015, 16, 914–927. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Cosmological Attractors and Asymptotic Freedom of the Inflaton Field. J. Cosmol. Astropart. Phys. 2016, 1606, 047. [Google Scholar] [CrossRef]
- Maeda, K.i. Inflation as a Transient Attractor in R2 Cosmology. Phys. Rev. D 1988, 37, 858. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.B.; Linde, A.D. Chaotic Inflation in Supergravity. Phys. Lett. B 1984, 139, 27–30. [Google Scholar] [CrossRef]
- Goncharov, A.S.; Linde, A.D. Chaotic inflation of the universe in supergravity. Sov. Phys. JETP 1984, 59, 930–933. [Google Scholar]
- Pradisi, G.; Salvio, A. (In)equivalence of metric-affine and metric effective field theories. Eur. Phys. J. C 2022, 82, 840. [Google Scholar] [CrossRef]
- Salvio, A. Inflating and reheating the Universe with an independent affine connection. Phys. Rev. D 2022, 106, 103510. [Google Scholar] [CrossRef]
- Marco, A.D.; Orazi, E.; Pradisi, G. Einstein– Cartan pseudoscalaron inflation. Eur. Phys. J. C 2024, 84, 146. [Google Scholar] [CrossRef]
- Cicoli, M.; Conlon, J.P.; Quevedo, F. General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation. J. High Energy Phys. 2008, 10, 105. [Google Scholar] [CrossRef]
- Cicoli, M.; Burgess, C.P.; Quevedo, F. Fibre Inflation: Observable Gravity Waves from IIB String Compactifications. J. Cosmol. Astropart. Phys. 2009, 03, 013. [Google Scholar] [CrossRef]
- Cicoli, M.; Muia, F.; Shukla, P. Global Embedding of Fibre Inflation Models. J. High Energy Phys. 2016, 11, 182. [Google Scholar] [CrossRef]
- Cicoli, M.; Valentino, E.D. Fitting string inflation to real cosmological data: The fiber inflation case. Phys. Rev. D 2020, 102, 043521. [Google Scholar] [CrossRef]
- Acquaviva, V.; Bartolo, N.; Matarrese, S.; Riotto, A. Second order cosmological perturbations from inflation. Nucl. Phys. B 2003, 667, 119–148. [Google Scholar] [CrossRef]
- Maldacena, J.M. Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 2003, 05, 013. [Google Scholar] [CrossRef]
- Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A. Non-Gaussianity from inflation: Theory and observations. Phys. Rept. 2004, 402, 103–266. [Google Scholar] [CrossRef]
- Babich, D.; Creminelli, P.; Zaldarriaga, M. The Shape of non-Gaussianities. J. Cosmol. Astropart. Phys. 2004, 08, 009. [Google Scholar] [CrossRef]
- Chen, X. Primordial Non-Gaussianities from Inflation Models. Adv. Astron. 2010, 2010, 638979. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Maldacena, J. Cosmological Collider Physics. arXiv 2015, arXiv:1503.08043. [Google Scholar]
- Sasaki, M.; Stewart, E.D. A General analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys. 1996, 95, 71–78. [Google Scholar] [CrossRef]
- Lyth, D.H.; Malik, K.A.; Sasaki, M. A General proof of the conservation of the curvature perturbation. J. Cosmol. Astropart. Phys. 2005, 05, 004. [Google Scholar] [CrossRef]
- Wands, D.; Malik, K.A.; Lyth, D.H.; Liddle, A.R. A New approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 2000, 62, 043527. [Google Scholar] [CrossRef]
- Dias, M.; Ribeiro, R.H.; Seery, D. The δN formula is the dynamical renormalization group. J. Cosmol. Astropart. Phys. 2013, 10, 062. [Google Scholar] [CrossRef]
- Sugiyama, N.S.; Komatsu, E.; Futamase, T. δN formalism. Phys. Rev. D 2013, 87, 023530. [Google Scholar] [CrossRef]
- Abolhasani, A.A.; Firouzjahi, H.; Naruko, A.; Sasaki, M. Delta N Formalism in Cosmological Perturbation Theory; WSP: Phoenix, AZ, USA, 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Marco, A.; Orazi, E.; Pradisi, G. Introduction to the Number of e-Folds in Slow-Roll Inflation. Universe 2024, 10, 284. https://doi.org/10.3390/universe10070284
Di Marco A, Orazi E, Pradisi G. Introduction to the Number of e-Folds in Slow-Roll Inflation. Universe. 2024; 10(7):284. https://doi.org/10.3390/universe10070284
Chicago/Turabian StyleDi Marco, Alessandro, Emanuele Orazi, and Gianfranco Pradisi. 2024. "Introduction to the Number of e-Folds in Slow-Roll Inflation" Universe 10, no. 7: 284. https://doi.org/10.3390/universe10070284
APA StyleDi Marco, A., Orazi, E., & Pradisi, G. (2024). Introduction to the Number of e-Folds in Slow-Roll Inflation. Universe, 10(7), 284. https://doi.org/10.3390/universe10070284