On the Nature of the Radio Calibrator and Gamma-Ray Emitting NLS1 Galaxy 3C 286 and Its Multiwavelength Variability
Abstract
:1. Introduction: 3C 286
1.1. Radio Properties and Radio Calibrator
1.2. Optical Spectroscopy and NLS1 Classification
1.3. UV Properties and DLA System
1.4. Fermi Gamma-Ray Detection of 3C 286 despite Its Misaligned Jet
1.5. X-ray Properties
2. Swift Observations
2.1. XRT Data Reduction and Spectral Analysis
2.2. UVOT Data Reduction and Analysis
3. Effelsberg Radio Flux Density and Polarimetry Observations
3.1. Flux Densities
3.2. Polarimetry
4. Chandra Imaging Observation
5. Long-Term X-ray Light Curve
6. Discussion
6.1. How Much Radio Variability?
6.2. X-ray Spectrum, Soft Excess, and Variability
6.3. Extinction, Absorption, and the Very High Radio Loudness of 3C 286
6.4. Possible Detection of X-rays from the SW Lobe with Chandra
6.5. The Origin of the Gamma-Ray Emission of 3C 286
- Binary AGN, Binary SMBH, or Chance Projection of Multiple Sources
- Intervening Galaxy
- Other Nearby, Unrelated Galaxies in the Field
- Microlensing
- Emission from Lobes
- Jet Deflection on Dense Gas
- Strong (and Variable) External Photon Field
7. Summary and Conclusions
- No radio variability is detected. The (2.6–41 GHz) flux density, polarization percentage, and polarization angle remain constant at Effelsberg telescope resolution when compared to past measurements, confirming the calibrator status of 3C 286.
- The X-ray spectrum of 3C 286 is well represented by a soft excess on top of a flat powerlaw. The long-term X-ray light curve confirms the evidence for X-ray variability by a factor ∼2, and spectral fits to Swift observations suggest that it is the soft (disk) component which varies; not unexpected in light of the NLS1 classification of 3C 286. Disk variability will not necessarily affect the inner jet, but it could.
- The amount of extinction/absorption along our line-of-sight was rigorously assessed. No reddening intrinsic to 3C 286 is found, and the excess X-ray absorption detected with XMM-Newton [79] is consistent with the intervening DLA system, which has low dust content as well. The lack of reddening validates the estimate of a high Eddington ratio, the NLS1 classification of 3C 286, and its high radio-loudness index. 3C 286 stands out as one of the radio-loudest NLS1 galaxies known.
- The Chandra image reveals tentative evidence for hard X-ray emission from the SW lobe.
- Different gamma-ray emission mechanisms were discussed. Several scenarios were found to be unlikely (no positive evidence for a dual AGN or binary SMBH so far, no alternative counterpart to the gamma-ray emission detected in X-rays, and no evidence that 3C 286 is a particularly young CSS with its jet still making its way out of the galaxy for the first time). It is speculated that the NLS1 character of the source and its high Eddington ratio, and efficient reprocessing of the disk photons in the BLR and torus, lead to efficient IC processes contributing to the observed gamma-ray emission.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Flux Density Measurements
Date | V | B | U | W1 | M | W2 |
---|---|---|---|---|---|---|
2020-08-16 | 17.30 | 17.67 | 16.33 | 15.99 | 15.79 | 16.00 |
2020-08-21 | 17.23 | 17.59 | 16.29 | 16.01 | 15.81 | 16.00 |
2023-11-04 | 17.42 | 17.45 | 16.31 | 16.14 | 15.93 | 16.14 |
2023-11-14 | 17.25 | 17.77 | 16.35 | 16.19 | 15.92 | 16.16 |
2023-11-29 | ... | 17.55 | 16.58 | 16.17 | 15.89 | 16.11 |
2023-12-03 | 17.35 | 17.30 | 16.37 | 16.08 | 16.02 | 16.08 |
2024-04-18 | 17.34 | 17.77 | 16.55 | 16.19 | 16.07 | 16.12 |
S | p | |||
---|---|---|---|---|
GHz | Jy | |||
2023-11-03 | 2023-11-16 | 2023-11-03 | 2023-11-16 | |
2.595 | 10.59 | 10.65 | 10.9 | 10.8 |
2.95 | 9.76 | 9.97 | 11.4 | 11.0 |
4.85 | 7.29 | 7.52 | 11.5 | 11.0 |
10.45 | 4.48 | 4.44 | 11.3 | 11.6 |
14.25 | 3.49 | 3.43 | 12.6 | 13.1 |
19.25 | 2.93 | 2.83 | ||
22.85 | 2.46 | 2.43 | ||
24.75 | 2.33 | 2.25 | ||
36.25 | 1.68 | |||
41.25 | 1.55 |
Appendix A.2. Other X-ray Sources Detected in the Field with Swift
Source | RA-J2000 | Decl-J2000 | CR | Counterpart | d | |
---|---|---|---|---|---|---|
() | cts/s | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) |
X1 | 13 31 08.4 | +30 30 36.0 | 15.7 | 11.1 | 3C 286 | |
X2 | 13 30 56.0 | +30 40 23.7 | 2.53 | 4.2 | WISE source | |
X3 | 13 30 33.1 | +30 33 29.2 | 1.90 | 3.7 | SDSS QSO candidate | |
z = 1.745 | ||||||
X4 | 13 30 57.2 | +30 37 46.2 | 1.50 | 3.2 | WISE source | |
X5 | 13 30 30.4 | +30 33 54.4 | 1.53 | 3.3 | – | |
X6 | 13 31 16.4 | +30 35 52.1 | 1.50 | 3.2 | – |
1 | 3C 286 is actually a narrow-line type 1 quasar, not a NLS1 galaxy. However, we follow the approach common in the literature to refer to all narrow-line type 1 AGN (quasars and their lower luminosity equivalents of Seyfert galaxies) collectively as NLS1 galaxies. |
2 | Strong projection effects are unlikely to affect the Balmer-line profile, since 3C 286 is misaligned [28], i.e., it is not a blazar viewed near face-on. We further note that 3C 286, like many NLS1 galaxies [32,35,50], has broad wings in its Balmer lines, and its H profile is alternatively well fit by a Lorentz profile (rather than double Gauß profiles) with FWHM(H) = 1858 km/s. |
3 | At an association probability of 0.985 [60], 3C 286 is the most likely counterpart of the Fermi source, but there remains a small possibility of an alternative counterpart identification. |
References
- Wright, E.L. A Cosmology Calculator for the World Wide Web. Publ. Astron. Soc. Pac. 2006, 118, 1711–1715. [Google Scholar] [CrossRef]
- Edge, D.O.; Shakeshaft, J.R.; McAdam, W.B.; Baldwin, J.E.; Archer, S. A survey of radio sources at a frequency of 159 Mc/s. Mem. R. Astron. Soc. 1959, 68, 37–60. [Google Scholar]
- Matthews, T.A.; Sandage, A.R. Optical Identification of 3C 48, 3C 196, and 3C 286 with Stellar Objects. Astrophys. J. 1963, 138, 30. [Google Scholar] [CrossRef]
- Wilkinson, P.N.; Readhead, A.C.S.; Anderson, B.; Purcell, G.H. VLBI observations of compact radio sources at 609 megahertz. Astrophys. J. 1979, 232, 365–381. [Google Scholar] [CrossRef]
- Pearson, T.J.; Readhead, A.C.S.; Wilkinson, P.N. Maps of the quasars 3C 119,3C 286, 3C 345, 3C 454.3 and CTA 102 with a resolution of 5 milli-arcseconds at 1.67 GHz. Astrophys. J. 1980, 236, 714–723. [Google Scholar] [CrossRef]
- Spencer, R.E.; McDowell, J.C.; Charlesworth, M.; Fanti, C.; Parma, P.; Peacock, J.A. MERLIN and VLA observations of compact steep-spectrum radio sources. Mon. Not. R. Astron. Soc. 1989, 240, 657–687. [Google Scholar] [CrossRef]
- van Breugel, W.J.M.; Fanti, C.; Fanti, R.; Stanghellini, C.; Schilizzi, R.T.; Spencer, R.E. Compact Steep-Spectrum 3CR sources: VLA observations at 1.5, 15 and 22.5 GHz. Astron. Astrophys. 1992, 256, 56. [Google Scholar]
- An, T.; Hong, X.Y.; Wang, W.H. The Kiloparsec-scale Structure of 3C 286. Chin. J. Astron. Astrophys. 2004, 4, 28–36. [Google Scholar] [CrossRef]
- Zhang, F.J.; Spencer, R.E.; Schilizzi, R.T.; Fanti, C.; Baath, L.B.; Su, B.M. Are there two engines at the center of 3C 286? Astron. Astrophys. 1994, 287, 32–37. [Google Scholar]
- Cotton, W.D.; Fanti, C.; Fanti, R.; Dallacasa, D.; Foley, A.R.; Schilizzi, R.T.; Spencer, R.E. VLBA polarimetric observations of 3C 286 at 5 GHz. Astron. Astrophys. 1997, 325, 479–483. [Google Scholar]
- Kellermann, K.I.; Vermeulen, R.C.; Zensus, J.A.; Cohen, M.H. Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. Astron. J. 1998, 115, 1295–1318. [Google Scholar] [CrossRef]
- An, T.; Lao, B.Q.; Zhao, W.; Mohan, P.; Cheng, X.P.; Cui, Y.Z.; Zhang, Z.L. Parsec-scale jet properties of the gamma-ray quasar 3C 286. Mon. Not. R. Astron. Soc. 2017, 466, 952–959. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. Astrophys. J. Suppl. Ser. 2018, 234, 12. [Google Scholar] [CrossRef]
- Peacock, J.A.; Wall, J.V. Bright extragalactic radio sources at 2.7 GHz-II. Observations with the Cambridge 5-km telescope. Mon. Not. R. Astron. Soc. 1982, 198, 843–860. [Google Scholar] [CrossRef]
- Rudnick, L.; Jones, T.W. Rotation measures for compact variable radio sources. Astron. J. 1983, 88, 518–526. [Google Scholar] [CrossRef]
- Akujor, C.E.; Garrington, S.T. Compact steep-spectrum sources–polarisation observations at 1.6, 4.9, 8.4 and 15 GHz. Astron. Astrophys. Suppl. Ser. 1995, 112, 235. [Google Scholar]
- Nagai, H.; Nakanishi, K.; Paladino, R.; Hull, C.L.H.; Cortes, P.; Moellenbrock, G.; Fomalont, E.; Asada, K.; Hada, K. ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286. Astrophys. J. 2016, 824, 132. [Google Scholar] [CrossRef]
- Ott, M.; Witzel, A.; Quirrenbach, A.; Krichbaum, T.P.; Standke, K.J.; Schalinski, C.J.; Hummel, C.A. An updated list of radio flux density calibrators. Astron. Astrophys. 1994, 284, 331–339. [Google Scholar]
- Perley, R.A.; Butler, B.J. Integrated Polarization Properties of 3C48, 3C138, 3C147, and 3C286. Astrophys. J. Suppl. Ser. 2013, 206, 16. [Google Scholar] [CrossRef]
- Perley, R.A.; Butler, B.J. An Accurate Flux Density Scale from 1 to 50 GHz. Astrophys. J. Suppl. Ser. 2013, 204, 19. [Google Scholar] [CrossRef]
- Burbidge, G.R.; Burbidge, E.M. Red-shifts of Quasi-stellar Objects and Related Extragalactic Systems. Nature 1969, 222, 735–741. [Google Scholar] [CrossRef]
- Hirst, P.; Jackson, N.; Rawlings, S. Near-infrared spectroscopy of powerful compact steep-spectrum radio sources. Mon. Not. R. Astron. Soc. 2003, 346, 1009–1020. [Google Scholar] [CrossRef]
- Schneider, D.P.; Hall, P.B.; Richards, G.T.; Strauss, M.A.; Vanden Berk, D.E.; Anderson, S.F.; Brandt, W.N.; Fan, X.; Jester, S.; Gray, J.; et al. The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release. Astron. J. 2007, 134, 102–117. [Google Scholar] [CrossRef]
- Schmidt, M. Spectrum of a Stellar Object Identified with the Radio Source 3c 286. Astrophys. J. 1962, 136, 684. [Google Scholar] [CrossRef]
- Oke, J.B. The Redshift of the Quasi-Stellar Radio Source 3c 286. Astrophys. J. 1965, 142, 810. [Google Scholar] [CrossRef]
- Dawson, K.S.; Schlegel, D.J.; Ahn, C.P.; Anderson, S.F.; Aubourg, É.; Bailey, S.; Barkhouser, R.H.; Bautista, J.E.; Beifiori, A.; Berlind, A.A.; et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 2013, 145, 10. [Google Scholar] [CrossRef]
- Yao, S. Ph.D. Thesis, National Astronomical Observatories of China, CAS, Beijing, China, 2016.
- Berton, M.; Foschini, L.; Caccianiga, A.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P. An orientation-based unification of young jetted active galactic nuclei: The case of 3C 286. Front. Astron. Space Sci. 2017, 4, 8. [Google Scholar] [CrossRef]
- Yao, S.; Komossa, S. Spectroscopic classification, variability, and SED of the Fermi-detected CSS 3C 286: The radio-loudest NLS1 galaxy? Mon. Not. R. Astron. Soc. 2021, 501, 1384–1393. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Pogge, R.W. The spectra of narrow-line Seyfert 1 galaxies. Astrophys. J. 1985, 297, 166–176. [Google Scholar] [CrossRef]
- Goodrich, R.W. Spectropolarimetry of “Narrow-Line” Seyfert 1 Galaxies. Astrophys. J. 1989, 342, 224. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P.; Gonçalves, A.C. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies. Astron. Astrophys. 2001, 372, 730–754. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Zwitter, T.; Marziani, P.; Dultzin-Hacyan, D. Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. Astrophys. J. Lett. 2000, 536, L5–L9. [Google Scholar] [CrossRef] [PubMed]
- Boroson, T.A. Black Hole Mass and Eddington Ratio as Drivers for the Observable Properties of Radio-loud and Radio-quiet QSOs. Astrophys. J. 2002, 565, 78–85. [Google Scholar] [CrossRef]
- Xu, D.; Komossa, S.; Zhou, H.; Lu, H.; Li, C.; Grupe, D.; Wang, J.; Yuan, W. Correlation Analysis of a Large Sample of Narrow-line Seyfert 1 Galaxies: Linking Central Engine and Host Properties. Astron. J. 2012, 143, 83. [Google Scholar] [CrossRef]
- Grupe, D.; Komossa, S.; Leighly, K.M.; Page, K.L. The Simultaneous Optical-to-X-ray Spectral Energy Distribution of Soft X-ray Selected Active Galactic Nuclei Observed by Swift. Astrophys. J. Suppl. Ser. 2010, 187, 64–106. [Google Scholar] [CrossRef]
- Komossa, S. Narrow-line Seyfert 1 Galaxies. In Proceedings of the Revista Mexicana de Astronomia y Astrofisica Conference Series. Revista Mexicana de Astronomia y Astrofisica Conference Series, 2008; Volume 32, pp. 86–92. Available online: https://www.redalyc.org/pdf/571/57103230.pdf(accessed on 15 January 2024).
- Gallo, L. X-ray perspective of Narrow-line Seyfert 1 galaxies. In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and Their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 34. [Google Scholar] [CrossRef]
- Lister, M. Radio Properties of Narrow-Line Seyfert 1 Galaxies. In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and Their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 22. [Google Scholar] [CrossRef]
- D’Ammando, F. Relativistic Jets in Gamma-Ray-Emitting Narrow-Line Seyfert 1 Galaxies. Galaxies 2019, 7, 87. [Google Scholar] [CrossRef]
- Paliya, V.S. Gamma-ray emitting narrow-line Seyfert 1 galaxies: Past, present, and future. J. Astrophys. Astron. 2019, 40, 39. [Google Scholar] [CrossRef]
- Komossa, S. Multi-wavelength properties of radio-loud Narrow-line Seyfert 1 galaxies. In Proceedings of the Revisiting Narrow-Line Seyfert 1 Galaxies and Their Place in the Universe, Padova, Italy, 9–13 April 2018; p. 15. [Google Scholar] [CrossRef]
- Puchnarewicz, E.M.; Mason, K.O.; Cordova, F.A.; Kartje, J.; Brabduardi-A A Puchnarewicz, E.M.; Mason, K.O.; Cordova, F.A.; Kartje, J.; Branduardi-Raymont, G.; Mittaz, J.P.D.; et al. Optical properties of active galaxies with ultra-soft X-ray spectra. Mon. Not. R. Astron. Soc. 1992, 256, 589. [Google Scholar] [CrossRef]
- Komossa, S.; Voges, W.; Xu, D.; Mathur, S.; Adorf, H.M.; Lemson, G.; Duschl, W.J.; Grupe, D. Radio-loud Narrow-Line Type 1 Quasars. Astron. J. 2006, 132, 531–545. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, H.Y.; Komossa, S.; Dong, X.B.; Wang, T.G.; Lu, H.L.; Bai, J.M. A Population of Radio-Loud Narrow-Line Seyfert 1 Galaxies with Blazar-Like Properties? Astrophys. J. 2008, 685, 801–827. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei. Astrophys. J. Lett. 2009, 707, L142–L147. [Google Scholar] [CrossRef]
- Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R.J.C.; Chamani, W. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2018, 614, L1. [Google Scholar] [CrossRef]
- Berton, M.; Järvelä, E.; Crepaldi, L.; Lähteenmäki, A.; Tornikoski, M.; Congiu, E.; Kharb, P.; Terreran, G.; Vietri, A. Absorbed relativistic jets in radio-quiet narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2020, 636, A64. [Google Scholar] [CrossRef]
- Järvelä, E.; Savolainen, T.; Berton, M.; Lähteenmäki, A.; Kiehlmann, S.; Hovatta, T.; Varglund, I.; Readhead, A.C.S.; Tornikoski, M.; Max-Moerback, W.; et al. Unprecedented extreme high-frequency radio variability in early-stage active galactic nuclei. arXiv 2023, arXiv:2312.02326. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. Front. Astron. Space Sci. 2018, 5, 6. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.M.; Gan, Y.Y.; Yi, T.F.; Wang, J.F.; Liang, E.W. Jet Properties of Compact Steep-spectrum Sources and an Eddington-ratio-driven Unification Scheme of Jet Radiation in Active Galactic Nuclei. Astrophys. J. 2020, 899, 2. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Paliya, V.S.; Stalin, C.S.; Domínguez, A.; Saikia, D.J. Narrow-line Seyfert 1 galaxies in Sloan Digital Sky Survey: A new optical spectroscopic catalogue. Mon. Not. R. Astron. Soc. 2024, 527, 7055–7069. [Google Scholar] [CrossRef]
- Cohen, R.D.; Barlow, T.A.; Beaver, E.A.; Junkkarinen, V.T.; Lyons, R.W.; Smith, H.E. Conditions in the Z = 0.692 Absorber toward 3CR 286. Astrophys. J. 1994, 421, 453. [Google Scholar] [CrossRef]
- Steidel, C.C.; Pettini, M.; Dickinson, M.; Persson, S.E. Imaging of Two Damped Lyman Alpha Absorbers at Intermediate Redshifts. Astron. J. 1994, 108, 2046. [Google Scholar] [CrossRef]
- Le Brun, V.; Bergeron, J. Lyalpha absorbers at z <= 1: HST-CFHT imaging and spectroscopy in the field of 3C 286. Astron. Astrophys. 1998, 332, 814–824. [Google Scholar] [CrossRef]
- Brown, R.L.; Roberts, M.S. 21-CENTIMETER Absorption at ≈ = 0.692 in the Quasar 3c 286. Astrophys. J. Lett. 1973, 184, L7. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Ballet, J.; Bruel, P.; Burnett, T.H.; Lott, B.; The Fermi-LAT Collaboration. Fermi Large Area Telescope Fourth Source Catalog Data Release 4 (4FGL-DR4). arXiv 2023, arXiv:2307.12546. [Google Scholar] [CrossRef]
- Principe, G.; Di Venere, L.; Orienti, M.; Migliori, G.; D’Ammando, F.; Mazziotta, M.N.; Giroletti, M. Gamma-ray emission from young radio galaxies and quasars. Mon. Not. R. Astron. Soc. 2021, 507, 4564–4583. [Google Scholar] [CrossRef]
- Fichtel, C.E.; Bertsch, D.L.; Chiang, J.; Dingus, B.L.; Esposito, J.A.; Fierro, J.M.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; et al. The First Energetic Gamma-Ray Experiment Telescope (EGRET) Source Catalog. Astrophys. J. Suppl. Ser. 1994, 94, 551. [Google Scholar] [CrossRef]
- Foschini, L.; Lister, M.L.; Andernach, H.; Ciroi, S.; Marziani, P.; Antón, S.; Berton, M.; Dalla Bontà, E.; Järvelä, E.; Marchã, M.J.M.; et al. A New Sample of Gamma-Ray Emitting Jetted Active Galactic Nuclei. Universe 2022, 8, 587. [Google Scholar] [CrossRef]
- Foschini, L.; Berton, M.; Caccianiga, A.; Ciroi, S.; Cracco, V.; Peterson, B.M.; Angelakis, E.; Braito, V.; Fuhrmann, L.; Gallo, L.; et al. Properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2015, 575, A13. [Google Scholar] [CrossRef]
- D’Ammando, F. Gamma-ray-emitting narrow-line Seyfert 1 galaxies: The Swift view. Mon. Not. R. Astron. Soc. 2020, 496, 2213–2229. [Google Scholar] [CrossRef]
- Yao, S.; Komossa, S. Multiwavelength variability of γ-ray emitting narrow-line Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 2023, 523, 441–452. [Google Scholar] [CrossRef]
- Tananbaum, H.; Wardle, J.F.C.; Zamorani, G.; Avni, Y. X-ray studies of quasars with the Einstein Observatory. III. The 3CR sample. Astrophys. J. 1983, 268, 60–67. [Google Scholar] [CrossRef]
- Voges, W.; Aschenbach, B.; Boller, T.; Brauninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; et al. Rosat All-Sky Survey Faint Source Catalogue. IAU Circ. 2000, 7432, 3. [Google Scholar]
- Massaro, F.; Harris, D.E.; Liuzzo, E.; Orienti, M.; Paladino, R.; Paggi, A.; Tremblay, G.R.; Wilkes, B.J.; Kuraszkiewicz, J.; Baum, S.A.; et al. The Chandra Survey of Extragalactic Sources in the 3CR Catalog: X-ray Emission from Nuclei, Jets, and Hotspots in the Chandra Archival Observations. Astrophys. J. Suppl. Ser. 2015, 220, 5. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Poole, T.S.; Breeveld, A.A.; Page, M.J.; Landsman, W.; Holland, S.T.; Roming, P.; Kuin, N.P.M.; Brown, P.J.; Gronwall, C.; Hunsberger, S.; et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 2008, 383, 627–645. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Hill, J.E.; Burrows, D.N.; Nousek, J.A.; Abbey, A.F.; Ambrosi, R.M.; Bräuninger, H.W.; Burkert, W.; Campana, S.; Cheruvu, C.; Cusumano, G.; et al. Readout modes and automated operation of the Swift X-ray Telescope. In X-ray and Gamma-ray Instrumentation for Astronomy XIII; Flanagan, K.A., Siegmund, O.H.W., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Society of Photo Optical: San Diego, CA, USA, 2004; Volume 5165, pp. 217–231. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The First Ten Years. In Astronomical Data Analysis Software and Systems V; Jacoby, G.H., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1996; Volume 101, p. 17. [Google Scholar]
- Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 1979, 228, 939–947. [Google Scholar] [CrossRef]
- Arnaud, K.; Gordon, C.; Dorman, B.; Rutkowski, K. XSPEC: An X-ray Spectral Fitting Package. 2024. Available online: https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XspecManual.html (accessed on 15 June 2024).
- HI4PI Collaboration; Ben Bekhti, N.; Flöer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M.R.; Dedes, L.; et al. HI4PI: A full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 2016, 594, A116. [Google Scholar] [CrossRef]
- Wilms, J.; Allen, A.; McCray, R. On the Absorption of X-rays in the Interstellar Medium. Astrophys. J. 2000, 542, 914–924. [Google Scholar] [CrossRef]
- Yao, S.; Komossa, S.; Kraus, A.; Grupe, D. First deep X-ray observations of 3C 286. Mon. Not. R. Astron. Soc. 2024; submitted. [Google Scholar]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Cenko, B. Swift satellite in safe mode. GRB Coord. Netw. 2024, 35953, 1. [Google Scholar]
- Breeveld, A.A.; Curran, P.A.; Hoversten, E.A.; Koch, S.; Landsman, W.; Marshall, F.E.; Page, M.J.; Poole, T.S.; Roming, P.; Smith, P.J.; et al. Further calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 2010, 406, 1687–1700. [Google Scholar] [CrossRef]
- Cardelli, J.A.; Clayton, G.C.; Mathis, J.S. The Relationship between Infrared, Optical, and Ultraviolet Extinction. Astrophys. J. 1989, 345, 245. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Kraus, A.; Gallo, L.C.; Gonzalez, A.G.; Parker, M.L.; Valtonen, M.J.; Hollett, A.R.; Bach, U.; Gómez, J.L.; et al. Project MOMO: Multiwavelength Observations and Modeling of OJ 287. Universe 2021, 7, 261. [Google Scholar] [CrossRef]
- Komossa, S.; Kraus, A.; Grupe, D.; Gonzalez, A.G.; Gurwell, M.A.; Gallo, L.C.; Liu, F.K.; Myserlis, I.; Krichbaum, T.P.; Laine, S.; et al. MOMO. VI. Multifrequency Radio Variability of the Blazar OJ 287 from 2015 to 2022, Absence of Predicted 2021 Precursor-flare Activity, and a New Binary Interpretation of the 2016/2017 Outburst. Astrophys. J. 2023, 944, 177. [Google Scholar] [CrossRef]
- Kraus, A.; Krichbaum, T.P.; Wegner, R.; Witzel, A.; Cimò, G.; Quirrenbach, A.; Britzen, S.; Fuhrmann, L.; Lobanov, A.P.; Naundorf, C.E.; et al. Intraday variability in compact extragalactic radio sources. II. Observations with the Effelsberg 100 m radio telescope. Astron. Astrophys. 2003, 401, 161–172. [Google Scholar] [CrossRef]
- Turlo, Z.; Forkert, T.; Sieber, W.; Wilson, W. Calibration of the instrumental polarization of radio telescopes. Astron. Astrophys. 1985, 142, 181–188. [Google Scholar]
- Weisskopf, M.C.; Brinkman, B.; Canizares, C.; Garmire, G.; Murray, S.; Van Speybroeck, L.P. An Overview of the Performance and Scientific Results from the Chandra X-ray Observatory. Publ. Astron. Soc. Pac. 2002, 114, 338108. [Google Scholar] [CrossRef]
- Peng, B.; Kraus, A.; Krichbaum, T.P.; Witzel, A. Long-term monitoring of selected radio sources. Astron. Astrophys. Suppl. Ser. 2000, 145, 1–10. [Google Scholar] [CrossRef]
- Agudo, I.; Thum, C.; Wiesemeyer, H.; Molina, S.N.; Casadio, C.; Gómez, J.L.; Emmanoulopoulos, D. 3C 286: A bright, compact, stable, and highly polarized calibrator for millimeter-wavelength observations. Astron. Astrophys. 2012, 541, A111. [Google Scholar] [CrossRef]
- Perley, R.A.; Butler, B.J. An Accurate Flux Density Scale from 50 MHz to 50 GHz. Astrophys. J. Suppl. Ser. 2017, 230, 7. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Pauliny-Toth, I.I.K.; Williams, P.J.S. The Spectra of Radio Sources in the Revised 3c Catalogue. Astrophys. J. 1969, 157, 1. [Google Scholar] [CrossRef]
- Kuehr, H.; Witzel, A.; Pauliny-Toth, I.I.K.; Nauber, U. A Catalogue of Extragalactic Radio Sources Having Flux Densities Greater than 1-JY at 5-GHZ. Astron. Astrophys. Suppl. Ser. 1981, 45, 367. [Google Scholar]
- Gabányi, K.É.; Marchili, N.; Krichbaum, T.P.; Britzen, S.; Fuhrmann, L.; Witzel, A.; Zensus, J.A.; Müller, P.; Liu, X.; Song, H.G.; et al. The IDV source J 1128+5925, a new candidate for annual modulation? Astron. Astrophys. 2007, 470, 83–95. [Google Scholar] [CrossRef]
- Massardi, M.; López-Caniego, M.; González-Nuevo, J.; Herranz, D.; de Zotti, G.; Sanz, J.L. Blind and non-blind source detection in WMAP 5-yr maps. Mon. Not. R. Astron. Soc. 2009, 392, 733–742. [Google Scholar] [CrossRef]
- Mantovani, F.; Mack, K.H.; Montenegro-Montes, F.M.; Rossetti, A.; Kraus, A. Effelsberg 100-m polarimetric observations of a sample of compact steep-spectrum sources. Astron. Astrophys. 2009, 502, 61–65. [Google Scholar] [CrossRef]
- Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V.; King, O.G.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.; Shepherd, M.C.; Stevenson, M.A.; Weintraub, L.C.; et al. Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring Program. Astrophys. J. Suppl. Ser. 2011, 194, 29. [Google Scholar] [CrossRef]
- Hull, C.L.H.; Girart, J.M.; Zhang, Q. 880 μm SMA Polarization Observations of the Quasar 3C 286. Astrophys. J. 2016, 830, 124. [Google Scholar] [CrossRef]
- Pasetto, A.; Carrasco-González, C.; O’Sullivan, S.; Basu, A.; Bruni, G.; Kraus, A.; Curiel, S.; Mack, K.H. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN. Astron. Astrophys. 2018, 613, A74. [Google Scholar] [CrossRef]
- Grasha, K.; Darling, J.; Bolatto, A.; Leroy, A.K.; Stocke, J.T. A Search for Intrinsic H I 21 cm and OH 18 cm Absorption toward Compact Radio Sources. Astrophys. J. Suppl. Ser. 2019, 245, 3. [Google Scholar] [CrossRef]
- Meyer, D.M.; York, D.G. Observations of Zn ii, CR ii, Fe ii, and CA II in the Damped Lyman-Alpha Absorber at Z = 0.692 toward 3C 286. Astrophys. J. Lett. 1992, 399, L121. [Google Scholar] [CrossRef]
- Gaskell, C.M. The case for cases B and C: Intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes. Mon. Not. R. Astron. Soc. 2017, 467, 226–238. [Google Scholar] [CrossRef]
- Osterbrock, D.E. Book: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Mill Valley, CA, USA, 1989. [Google Scholar]
- Komossa, S.; Bade, N. Properties of dusty warm absorbers and the case of IRAS17020+4544. Astron. Astrophys. 1998, 331, L49–L52. [Google Scholar] [CrossRef]
- Croston, J.H.; Birkinshaw, M.; Hardcastle, M.J.; Worrall, D.M. X-ray emission from the nuclei, lobes and hot-gas environments of two FR II radio galaxies. Mon. Not. R. Astron. Soc. 2004, 353, 879–889. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Annu. Rev. Astron. Astrophys. 2021, 29, 3. [Google Scholar] [CrossRef]
- Komossa, S.; Zensus, J.A. Compact object mergers: Observations of supermassive binary black holes and stellar tidal disruption events. In Star Clusters and Black Holes in Galaxies across Cosmic Time; Meiron, Y., Li, S., Liu, F.K., Spurzem, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; Volume 312, pp. 13–25. [Google Scholar] [CrossRef]
- De Rosa, A.; Vignali, C.; Bogdanović, T.; Capelo, P.R.; Charisi, M.; Dotti, M.; Husemann, B.; Lusso, E.; Mayer, L.; Paragi, Z.; et al. The quest for dual and binary supermassive black holes: A multi-messenger view. New Astron. Rev. 2019, 86, 101525. [Google Scholar] [CrossRef]
- de Vries, W.H.; O’Dea, C.P.; Baum, S.A.; Sparks, W.B.; Biretta, J.; de Koff, S.; Golombek, D.; Lehnert, M.D.; Macchetto, F.; McCarthy, P.; et al. Hubble Space Telescope Imaging of Compact Steep-Spectrum Radio Sources. Astrophys. J. Suppl. Ser. 1997, 110, 191–211. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Ostorero, L.; Begelman, M.C.; Moderski, R.; Kataoka, J.; Wagner, S. Evolution of and High-Energy Emission from GHz-Peaked Spectrum Sources. Astrophys. J. 2008, 680, 911–925. [Google Scholar] [CrossRef]
- Migliori, G.; Siemiginowska, A.; Kelly, B.C.; Stawarz, Ł.; Celotti, A.; Begelman, M.C. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View. Astrophys. J. 2014, 780, 165. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Gamma-Ray Imaging of a Radio Galaxy. Science 2010, 328, 725. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.W.; Zhang, H.M.; Gan, Y.Y.; Hu, X.K.; Wu, T.Z.; Zhang, J. Fermi Large Area Telescope Detection of Gamma-Rays from NGC 6251 Radio Lobe. arXiv 2024, arXiv:2402.04591. [Google Scholar] [CrossRef]
- Kino, M.; Ito, H.; Kawakatu, N.; Nagai, H. New prediction of extragalactic GeV γ-ray emission from radio lobes of young AGN jets. Mon. Not. R. Astron. Soc. 2009, 395, L43–L47. [Google Scholar] [CrossRef]
- Bosch-Ramon, V.; Perucho, M.; Barkov, M.V. Clouds and red giants interacting with the base of AGN jets. Astron. Astrophys. 2012, 539, A69. [Google Scholar] [CrossRef]
- Kaspi, S.; Maoz, D.; Netzer, H.; Peterson, B.M.; Vestergaard, M.; Jannuzi, B.T. The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei. Astrophys. J. 2005, 629, 61–71. [Google Scholar] [CrossRef]
- Evans, P.A.; Beardmore, A.P.; Page, K.L.; Tyler, L.G.; Osborne, J.P.; Goad, M.R.; O’Brien, P.T.; Vetere, L.; Racusin, J.; Morris, D.; et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 2007, 469, 379–385. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
J2000 Coordinates | z | g Magnitude | FWHM (H) | SMBH Mass | Radio Loudness | |
---|---|---|---|---|---|---|
RA, Decl | km/s | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) |
13 h 31 m 08.2879 s, + | 0.849 | 17.33 | 2001 | 1.3 | 1.0 |
Classification/Property | Waveband | Comment |
---|---|---|
NLS1 galaxy | optical | among radio-loudest known |
CSS | radio | spectral index |
misaligned Fermi source | gamma-rays | |
DLA absorber | UV/radio | intervening; |
Filter | or | t (ks) | |||||||
---|---|---|---|---|---|---|---|---|---|
2020-08-16 | 2020-08-21 | 2023-11-04 | 2023-11-14 | 2023-11-29 | 2023-12-03 | 2024-04-18 | |||
XRT | 0.3–10 keV | 2.03 | 1.39 | 1.93 | 1.68 | 1.66 | 2.18 | 1.51 | |
UVOT | W2 | 1928 Å | 0.65 | 0.42 | 0.63 | 0.55 | 0.57 | 0.71 | 0.48 |
M2 | 2246 Å | 0.49 | 0.37 | 0.45 | 0.38 | 0.23 | 0.12 | 0.33 | |
W1 | 2600 Å | 0.32 | 0.21 | 0.31 | 0.28 | 0.35 | 0.35 | 0.24 | |
U | 3465 Å | 0.16 | 0.10 | 0.16 | 0.14 | 0.10 | 0.18 | 0.12 | |
B | 4392 Å | 0.16 | 0.10 | 0.16 | 0.14 | 0.10 | 0.18 | 0.12 | |
V | 5468 Å | 0.16 | 0.10 | 0.16 | 0.14 | 0.10 | 0.18 | 0.12 |
Date | ||||||
---|---|---|---|---|---|---|
eV | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | |
2020 low-state | 1.11 | – | 1.83 | 2.23 | – | – |
1.11 | 1.75 | 2.09 | 3.03 | 177 | ||
2023 high-state | 1.11 | – | 2.11 | 4.31 | – | – |
1.11 | 1.75 | 2.09 | 4.21 | 177 | 1.43 | |
2023 XMM | 1.11 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komossa, S.; Yao, S.; Grupe, D.; Kraus, A. On the Nature of the Radio Calibrator and Gamma-Ray Emitting NLS1 Galaxy 3C 286 and Its Multiwavelength Variability. Universe 2024, 10, 289. https://doi.org/10.3390/universe10070289
Komossa S, Yao S, Grupe D, Kraus A. On the Nature of the Radio Calibrator and Gamma-Ray Emitting NLS1 Galaxy 3C 286 and Its Multiwavelength Variability. Universe. 2024; 10(7):289. https://doi.org/10.3390/universe10070289
Chicago/Turabian StyleKomossa, S., S. Yao, D. Grupe, and A. Kraus. 2024. "On the Nature of the Radio Calibrator and Gamma-Ray Emitting NLS1 Galaxy 3C 286 and Its Multiwavelength Variability" Universe 10, no. 7: 289. https://doi.org/10.3390/universe10070289
APA StyleKomossa, S., Yao, S., Grupe, D., & Kraus, A. (2024). On the Nature of the Radio Calibrator and Gamma-Ray Emitting NLS1 Galaxy 3C 286 and Its Multiwavelength Variability. Universe, 10(7), 289. https://doi.org/10.3390/universe10070289