Prospects for Time-Domain and Multi-Messenger Science with AXIS
Abstract
:1. Introduction
2. Fast X-ray Transients
3. Gravitational-Wave Counterparts
3.1. Stellar-Mass Compact Binary Mergers
3.2. Solitary and Non-Merging Neutron Stars
3.3. (Super)massive Black Hole Binaries and Mergers
4. Supernovae
4.1. Shock Breakout Emission
4.2. Circumtellar Medium Diagnostics
4.3. Compact Object Formation
5. Tidal Disruption Events
6. Changing Look/State AGN
7. Quasi-Periodic Eruptions
8. Magnetars
9. X-ray Binaries
10. Fast Radio Bursts
11. Sources of High-Energy Neutrinos
11.1. Blazars
11.2. Active Galaxies
11.3. Accretion-Powered Hypernebulae
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | LIGO A+ is fully funded and already being implemented and LIGO-India is proceeding well and expected to join the network in 2030. |
References
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv 2015, arXiv:1503.03757. [Google Scholar]
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L.W. The Square Kilometre Array. IEEE Proc. 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relat. 2020, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- IceCube-Gen2 Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Anton, G.; et al. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica. arXiv 2014, arXiv:1412.5106. [Google Scholar]
- Reynolds, C.S.; Kara, E.A.; Mushotzky, R.F.; Ptak, A.; Koss, M.J.; Williams, B.J.; Allen, S.W.; Bauer, F.E.; Bautz, M.; Bodaghee, A.; et al. Overview of the Advanced X-ray Imaging Satellite (AXIS). arXiv 2023, arXiv:2311.00780. [Google Scholar]
- Heise, J.; in’t Zand, J. Fast X-ray transients and X-ray flashes. In Compact Stellar X-ray Sources; Cambridge University Press: Cambridge, UK, 2010; p. 267. [Google Scholar]
- Pye, J.P.; McHardy, I.M. The Ariel V sky survey of fast-transient X-ray sources. Mon. Not. R. Astron. Soc. 1983, 205, 875–888. [Google Scholar] [CrossRef]
- Arefiev, V.A.; Priedhorsky, W.C.; Borozdin, K.N. Fast X-ray Transients and Their Connection to Gamma-Ray Bursts. Astrophys. J. 2003, 586, 1238–1249. [Google Scholar] [CrossRef]
- Ambruster, C.W.; Wood, K.S. The HEAO A-1 all-sky survey of fast X-ray transients. Astrophys. J. 1986, 311, 258–274. [Google Scholar] [CrossRef]
- Hurley, K.; Cline, T.; Mazets, E.; Barthelmy, S.; Butterworth, P.; Marshall, F.; Palmer, D.; Aptekar, R.; Golenetskii, S.; Il’Inskii, V.; et al. A giant periodic flare from the soft γ-ray repeater SGR1900+ 14. Nature 1999, 397, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. Erratum: An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 454, 246. [Google Scholar] [CrossRef]
- Jonker, P.G.; Glennie, A.; Heida, M.; Maccarone, T.; Hodgkin, S.; Nelemans, G.; Miller-Jones, J.C.A.; Torres, M.A.P.; Fender, R. Discovery of a New Kind of Explosive X-ray Transient near M86. Astrophys. J. 2013, 779, 14. [Google Scholar] [CrossRef]
- Glennie, A.; Jonker, P.G.; Fender, R.P.; Nagayama, T.; Pretorius, M.L. Two fast X-ray transients in archival Chandra data. Mon. Not. R. Astron. Soc. 2015, 450, 3765–3770. [Google Scholar] [CrossRef]
- Bauer, F.E.; Treister, E.; Schawinski, K.; Schulze, S.; Luo, B.; Alexander, D.M.; Brandt, W.N.; Comastri, A.; Forster, F.; Gilli, R.; et al. A new, faint population of X-ray transients. Mon. Not. R. Astron. Soc. 2017, 467, 4841–4857. [Google Scholar] [CrossRef]
- Lin, D.; Strader, J.; Carrasco, E.R.; Page, D.; Romanowsky, A.J.; Homan, J.; Irwin, J.A.; Remillard, R.A.; Godet, O.; Webb, N.A.; et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2018, 2, 656–661. [Google Scholar] [CrossRef]
- Lin, D.; Irwin, J.; Berger, E. Three Fast X-ray Transients Discovered from Chandra Archival Data. Astron. Telegr. 2019, 13171, 1. [Google Scholar]
- Xue, Y.Q.; Zheng, X.C.; Li, Y.; Brandt, W.N.; Zhang, B.; Luo, B.; Zhang, B.B.; Bauer, F.E.; Sun, H.; Lehmer, B.D.; et al. A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger. Nature 2019, 568, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Alp, D.; Larsson, J. Blasts from the Past: Supernova Shock Breakouts among X-ray Transients in the XMM-Newton Archive. Astrophys. J. 2020, 896, 39. [Google Scholar] [CrossRef]
- Novara, G.; Esposito, P.; Tiengo, A.; Vianello, G.; Salvaterra, R.; Belfiore, A.; De Luca, A.; D’Avanzo, P.; Greiner, J.; Scodeggio, M.; et al. A Supernova Candidate at z = 0.092 in XMM-Newton Archival Data. Astrophys. J. 2020, 898, 37. [Google Scholar] [CrossRef]
- Lin, D.; Strader, J.; Romanowsky, A.J.; Irwin, J.A.; Godet, O.; Barret, D.; Webb, N.A.; Homan, J.; Remillard, R.A. Multiwavelength Follow-up of the Hyperluminous Intermediate-mass Black Hole Candidate 3XMM J215022.4-055108. Astrophys. J. 2020, 892, L25. [Google Scholar] [CrossRef]
- Lin, D.; Irwin, J.A.; Berger, E. Chandra detection of a fast X-ray transient. Astron. Telegr. 2021, 14599, 1. [Google Scholar]
- Lin, D.; Irwin, J.A.; Berger, E.; Nguyen, R. Discovery of Three Candidate Magnetar-powered Fast X-ray Transients from Chandra Archival Data. Astrophys. J. 2022, 927, 211. [Google Scholar] [CrossRef]
- Eappachen, D.; Jonker, P.G.; Fraser, M.; Torres, M.A.P.; Dhillon, V.S.; Marsh, T.; Littlefair, S.P.; Quirola-Vásquez, J.; Maguire, K.; Mata Sánchez, D.; et al. Probing for the host galaxies of the fast X-ray transients XRT 000519 and XRT 110103. Mon. Not. R. Astron. Soc. 2022, 514, 302–312. [Google Scholar] [CrossRef]
- Eappachen, D.; Jonker, P.G.; Levan, A.J.; Quirola-Vásquez, J.; Torres, M.A.P.; Bauer, F.E.; Dhillon, V.S.; Marsh, T.; Littlefair, S.P.; Ravasio, M.E.; et al. The Fast X-ray Transient XRT 210423 and Its Host Galaxy. Astrophys. J. 2023, 948, 91. [Google Scholar] [CrossRef]
- Quirola-Vásquez, J.; Bauer, F.E.; Jonker, P.G.; Brandt, W.N.; Yang, G.; Levan, A.J.; Xue, Y.Q.; Eappachen, D.; Zheng, X.C.; Luo, B. Extragalactic fast X-ray transient candidates discovered by Chandra (2000–2014). Astron. Astrophys. 2022, 663, A168. [Google Scholar] [CrossRef]
- Quirola-Vásquez, J.; Bauer, F.E.; Jonker, P.G.; Brandt, W.N.; Yang, G.; Levan, A.J.; Xue, Y.Q.; Eappachen, D.; Camacho, E.; Ravasio, M.E.; et al. Extragalactic fast X-ray transient candidates discovered by Chandra (2014–2022). Astron. Astrophys. 2023, 675, A44. [Google Scholar] [CrossRef]
- Maguire, K.; Eracleous, M.; Jonker, P.G.; MacLeod, M.; Rosswog, S. Tidal Disruptions of White Dwarfs: Theoretical Models and Observational Prospects. Space Sci. Rev. 2020, 216, 39. [Google Scholar] [CrossRef]
- Saxton, R.; Komossa, S.; Auchettl, K.; Jonker, P.G. Correction to: X-ray Properties of TDEs. Space Sci. Rev. 2021, 217, 18. [Google Scholar] [CrossRef]
- Bayless, A.J.; Fryer, C.; Brown, P.J.; Young, P.A.; Roming, P.W.A.; Davis, M.; Lechner, T.; Slocum, S.; Echon, J.D.; Froning, C.S. Supernova Shock Breakout/Emergence Detection Predictions for a Wide-field X-ray Survey. Astrophys. J. 2022, 931, 15. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Valenti, S.; Della Valle, M.; Chincarini, G.; Sauer, D.N.; Benetti, S.; Pian, E.; Piran, T.; D’Elia, V.; Elias-Rosa, N.; et al. The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science 2008, 321, 1185. [Google Scholar] [CrossRef] [PubMed]
- Modjaz, M.; Li, W.; Butler, N.; Chornock, R.; Perley, D.; Blondin, S.; Bloom, J.S.; Filippenko, A.V.; Kirshner, R.P.; Kocevski, D.; et al. From Shock Breakout to Peak and Beyond: Extensive Panchromatic Observations of the Type Ib Supernova 2008D Associated with Swift X-ray Transient 080109. Astrophys. J. 2009, 702, 226–248. [Google Scholar] [CrossRef]
- De Luca, A.; Salvaterra, R.; Belfiore, A.; Carpano, S.; D’Agostino, D.; Haberl, F.; Israel, G.L.; Law-Green, D.; Lisini, G.; Marelli, M.; et al. The EXTraS project: Exploring the X-ray transient and variable sky. Astron. Astrophys. 2021, 650, A167. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B. Early X-ray and Optical Afterglow of Gravitational Wave Bursts from Mergers of Binary Neutron Stars. Astrophys. J. 2013, 763, L22. [Google Scholar] [CrossRef]
- Sesana, A.; Vecchio, A.; Eracleous, M.; Sigurdsson, S. Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window. Mon. Not. R. Astron. Soc. 2008, 391, 718–726. [Google Scholar] [CrossRef]
- Waxman, E.; Katz, B. Shock Breakout Theory. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 967. [Google Scholar] [CrossRef]
- Evans, P.A.; Page, K.L.; Beardmore, A.P.; Eyles-Ferris, R.A.J.; Osborne, J.P.; Campana, S.; Kennea, J.A.; Cenko, S.B. A real-time transient detector and the living Swift-XRT point source catalogue. Mon. Not. R. Astron. Soc. 2023, 518, 174–184. [Google Scholar] [CrossRef]
- Metzger, B.D.; Piro, A.L. Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars. Mon. Not. R. Astron. Soc. 2014, 439, 3916–3930. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, B.; Gao, H. X-ray Counterpart of Gravitational Waves Due to Binary Neutron Star Mergers: Light Curves, Luminosity Function, and Event Rate Density. Astrophys. J. 2017, 835, 7. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Zhang, B.B.; Zhang, B.; Bauer, F.E.; Xue, Y.; Yuan, W. A Unified Binary Neutron Star Merger Magnetar Model for the Chandra X-ray Transients CDF-S XT1 and XT2. Astrophys. J. 2019, 886, 129. [Google Scholar] [CrossRef]
- Metzger, B.D.; Beniamini, P.; Giannios, D. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-ray Bursts and Superluminous Supernovae. Astrophys. J. 2018, 857, 95. [Google Scholar] [CrossRef]
- Bloom, J.S.; Giannios, D.; Metzger, B.D.; Cenko, S.B.; Perley, D.A.; Butler, N.R.; Tanvir, N.R.; Levan, A.J.; O’Brien, P.T.; Strubbe, L.E.; et al. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science 2011, 333, 203. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Goldstein, J.; Ramirez-Ruiz, E.; Guillochon, J.; Samsing, J. Illuminating Massive Black Holes with White Dwarfs: Orbital Dynamics and High-Energy Transients from Tidal Interactions. Astrophys. J. 2014, 794, 9. [Google Scholar] [CrossRef]
- Taggart, K.; Perley, D.A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: The importance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 2021, 503, 3931–3952. [Google Scholar] [CrossRef]
- Fruchter, A.S.; Levan, A.J.; Strolger, L.; Vreeswijk, P.M.; Thorsett, S.E.; Bersier, D.; Burud, I.; Castro Cerón, J.M.; Castro-Tirado, A.J.; Conselice, C.; et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 2006, 441, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Fynbo, J.P.U.; Jakobsson, P.; Møller, P.; Hjorth, J.; Thomsen, B.; Andersen, M.I.; Fruchter, A.S.; Gorosabel, J.; Holland, S.T.; Ledoux, C.; et al. On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities. Astron. Astrophys. 2003, 406, L63–L66. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Bloom, J.S.; Chen, H.W.; Hurley, K.C.; Melbourne, J.; Dressler, A.; Graham, J.R.; Osip, D.J.; Vacca, W.D. The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature. Astrophys. J. 2004, 611, 200–207. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef]
- Merritt, D.; Schnittman, J.D.; Komossa, S. Hypercompact Stellar Systems around Recoiling Supermassive Black Holes. Astrophys. J. 2009, 699, 1690–1710. [Google Scholar] [CrossRef]
- Jonker, P.G.; Heida, M.; Torres, M.A.P.; Miller-Jones, J.C.A.; Fabian, A.C.; Ratti, E.M.; Miniutti, G.; Walton, D.J.; Roberts, T.P. The Nature of the Bright ULX X-2 in NGC 3921: A Chandra Position and HST Candidate Counterpart. Astrophys. J. 2012, 758, 28. [Google Scholar] [CrossRef]
- Reines, A.E.; Greene, J.E.; Geha, M. Dwarf Galaxies with Optical Signatures of Active Massive Black Holes. Astrophys. J. 2013, 775, 116. [Google Scholar] [CrossRef]
- Bloom, J.S.; Kulkarni, S.R.; Djorgovski, S.G. The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors. Astron. J. 2002, 123, 1111–1148. [Google Scholar] [CrossRef]
- Schulze, S.; Yaron, O.; Sollerman, J.; Leloudas, G.; Gal, A.; Wright, A.H.; Lunnan, R.; Gal-Yam, A.; Ofek, E.O.; Perley, D.A.; et al. The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophys. J. 2021, 255, 29. [Google Scholar] [CrossRef]
- Prieto, J.L.; Stanek, K.Z.; Beacom, J.F. Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals. Astrophys. J. 2008, 673, 999–1008. [Google Scholar] [CrossRef]
- Heintz, K.E.; Prochaska, J.X.; Simha, S.; Platts, E.; Fong, W.f.; Tejos, N.; Ryder, S.D.; Aggerwal, K.; Bhandari, S.; Day, C.K.; et al. Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophys. J. 2020, 903, 152. [Google Scholar] [CrossRef]
- Pradhan, P.; Falcone, A.D.; Kennea, J.A.; Burrows, D.N. Exploring rapid transient detection with the Athena Wide Field Imager. J. Astron. Telesc. Instrum. Syst. 2020, 6, 038002. [Google Scholar] [CrossRef]
- Levan, A.J.; Jonker, P.G.; Saccardi, A.; Malesani, D.B.; Tanvir, N.; Izzo, L.; Heintz, K.; Sanchez, D.; Quirola-Vasquez, J.; Torres, M.A.P.; et al. The fast X-ray transient EP240315a: A z∼5 gamma-ray burst in a Lyman continuum leaking galaxy. arXiv 2024, arXiv:2404.16350. [Google Scholar]
- Liu, Y.; Sun, H.; Svinkin, D.S.; DeLaunay, J.; Tanvir, N.; Gao, H.; Zhang, C.; Chen, Y.; Yuan, W.; An, J.; et al. Soft X-ray prompt emission from a high-redshift gamma-ray burst EP240315a. arXiv 2024, arXiv:2404.16424. [Google Scholar]
- Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R.T.; Im, M.; Fox, O.D.; Butler, N.R.; Cenko, S.B.; Sakamoto, T.; Fryer, C.L.; et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 2017, 551, 71–74. [Google Scholar] [CrossRef]
- Ryan, G.; van Eerten, H.; Piro, L.; Troja, E. Gamma-Ray Burst Afterglows in the Multimessenger Era: Numerical Models and Closure Relations. Astrophys. J. 2020, 896, 166. [Google Scholar] [CrossRef]
- Margutti, R.; Chornock, R. First Multimessenger Observations of a Neutron Star Merger. Annu. Rev. Astron. Astrophys. 2021, 59, 155–202. [Google Scholar] [CrossRef]
- Sridhar, N.; Zrake, J.; Metzger, B.D.; Sironi, L.; Giannios, D. Shock-powered radio precursors of neutron star mergers from accelerating relativistic binary winds. Mon. Not. R. Astron. Soc. 2021, 501, 3184–3202. [Google Scholar] [CrossRef]
- Nissanke, S.; Holz, D.E.; Dalal, N.; Hughes, S.A.; Sievers, J.L.; Hirata, C.M. Determining the Hubble constant from gravitational wave observations of merging compact binaries. arXiv 2013, arXiv:1307.2638. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass∼3.4 M⊙. Astrophys. J. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed]
- Morsony, B.J.; De Los Santos, R.; Hernandez, R.; Bustamante, J.; Yassuiae, B.; Astorga, G.; Parra, J. The afterglow of GW170817 from every angle: Prospects for detecting the afterglows of binary neutron star mergers. arXiv 2023, arXiv:2306.00076. [Google Scholar]
- Petrov, P.; Singer, L.P.; Coughlin, M.W.; Kumar, V.; Almualla, M.; Anand, S.; Bulla, M.; Dietrich, T.; Foucart, F.; Guessoum, N. Data-driven Expectations for Electromagnetic Counterpart Searches Based on LIGO/Virgo Public Alerts. Astrophys. J. 2022, 924, 54. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, K.P.; Deller, A.T. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 2019, 3, 940–944. [Google Scholar] [CrossRef]
- Riles, K. Searches for continuous-wave gravitational radiation. Living Rev. Relat. 2023, 26, 3. [Google Scholar] [CrossRef]
- Wette, K. Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective. Astropart. Phys. 2023, 153, 102880. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Milosavljević, M. An Eccentric Circumbinary Accretion Disk and the Detection of Binary Massive Black Holes. Astrophys. J. 2008, 672, 83–93. [Google Scholar] [CrossRef]
- Shi, J.M.; Krolik, J.H.; Lubow, S.H.; Hawley, J.F. Three-dimensional Magnetohydrodynamic Simulations of Circumbinary Accretion Disks: Disk Structures and Angular Momentum Transport. Astrophys. J. 2012, 749, 118. [Google Scholar] [CrossRef]
- Noble, S.C.; Mundim, B.C.; Nakano, H.; Krolik, J.H.; Campanelli, M.; Zlochower, Y.; Yunes, N. Circumbinary Magnetohydrodynamic Accretion into Inspiraling Binary Black Holes. Astrophys. J. 2012, 755, 51. [Google Scholar] [CrossRef]
- D’Orazio, D.J.; Haiman, Z.; MacFadyen, A. Accretion into the central cavity of a circumbinary disc. Mon. Not. R. Astron. Soc. 2013, 436, 2997–3020. [Google Scholar] [CrossRef]
- Farris, B.D.; Duffell, P.; MacFadyen, A.I.; Haiman, Z. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity. Astrophys. J. 2014, 783, 134. [Google Scholar] [CrossRef]
- Tang, Y.; MacFadyen, A.; Haiman, Z. On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs. Mon. Not. R. Astron. Soc. 2017, 469, 4258–4267. [Google Scholar] [CrossRef]
- Bowen, D.B.; Mewes, V.; Campanelli, M.; Noble, S.C.; Krolik, J.H.; Zilhão, M. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger. Astrophys. J. 2018, 853, L17. [Google Scholar] [CrossRef]
- Paschalidis, V.; Bright, J.; Ruiz, M.; Gold, R. Minidisk Dynamics in Accreting, Spinning Black Hole Binaries: Simulations in Full General Relativity. Astrophys. J. 2021, 910, L26. [Google Scholar] [CrossRef]
- Roedig, C.; Krolik, J.H.; Miller, M.C. Observational Signatures of Binary Supermassive Black Holes. Astrophys. J. 2014, 785, 115. [Google Scholar] [CrossRef]
- Farris, B.D.; Duffell, P.; MacFadyen, A.I.; Haiman, Z. Characteristic signatures in the thermal emission from accreting binary black holes. Mon. Not. R. Astron. Soc. 2015, 446, L36–L40. [Google Scholar] [CrossRef]
- Sesana, A.; Roedig, C.; Reynolds, M.T.; Dotti, M. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries. Mon. Not. R. Astron. Soc. 2012, 420, 860–877. [Google Scholar] [CrossRef]
- Gold, R.; Paschalidis, V.; Etienne, Z.B.; Shapiro, S.L.; Pfeiffer, H.P. Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Phys. Rev. D 2014, 89, 064060. [Google Scholar] [CrossRef]
- D’Orazio, D.J.; Haiman, Z.; Schiminovich, D. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate. Nature 2015, 525, 351–353. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, D.J.; Di Stefano, R. Periodic self-lensing from accreting massive black hole binaries. Mon. Not. R. Astron. Soc. 2018, 474, 2975–2986. [Google Scholar] [CrossRef]
- Davelaar, J.; Haiman, Z. Self-lensing flares from black hole binaries: General-relativistic ray tracing of black hole binaries. Phys. Rev. D 2022, 105, 103010. [Google Scholar] [CrossRef]
- Bowen, D.B.; Campanelli, M.; Krolik, J.H.; Mewes, V.; Noble, S.C. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks. Astrophys. J. 2017, 838, 42. [Google Scholar] [CrossRef]
- Tang, Y.; Haiman, Z.; MacFadyen, A. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band. Mon. Not. R. Astron. Soc. 2018, 476, 2249–2257. [Google Scholar] [CrossRef]
- Ivanov, P.B.; Igumenshchev, I.V.; Novikov, I.D. Hydrodynamics of Black Hole-Accretion Disk Collision. Astrophys. J. 1998, 507, 131–144. [Google Scholar] [CrossRef]
- Lehto, H.J.; Valtonen, M.J. OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J. 1996, 460, 207. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array. arXiv 2023, arXiv:2306.16215. [Google Scholar]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Bak Nielsen, A.S.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals. arXiv 2023, arXiv:2306.16214. [Google Scholar]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I. arXiv 2023, arXiv:2306.16216. [Google Scholar]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Auclair, P.; Babak, S.; Bagchi, M.; Bak Nielsen, A.S.; Barausse, E.; Bassa, C.G.; Bathula, A.; et al. The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe. arXiv 2023, arXiv:2306.16227. [Google Scholar]
- Kelley, L.Z.; Blecha, L.; Hernquist, L.; Sesana, A.; Taylor, S.R. Single sources in the low-frequency gravitational wave sky: Properties and time to detection by pulsar timing arrays. Mon. Not. R. Astron. Soc. 2018, 477, 964–976. [Google Scholar] [CrossRef]
- Rosado, P.A.; Sesana, A.; Gair, J. Expected properties of the first gravitational wave signal detected with pulsar timing arrays. Mon. Not. R. Astron. Soc. 2015, 451, 2417–2433. [Google Scholar] [CrossRef]
- Hallinan, G.; Ravi, V.; Weinreb, S.; Kocz, J.; Huang, Y.; Woody, D.P.; Lamb, J.; D’Addario, L.; Catha, M.; Law, C.; et al. The DSA-2000—A Radio Survey Camera. arXiv 2019, arXiv:1907.07648. [Google Scholar]
- Lazio, T.J.W. The Square Kilometre Array pulsar timing array. Class. Quantum Gravity 2013, 30, 224011. [Google Scholar] [CrossRef]
- Liu, T.; Cohen, T.; McGrath, C.; Demorest, P.B.; Vigeland, S.J. Multi-messenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation. II. Optimal Strategies for a Pulsar Timing Array. Astrophys. J. 2023, 945, 78. [Google Scholar] [CrossRef]
- Liu, T.; Vigeland, S.J. Multi-messenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation: Implications for Nanohertz Gravitational Wave Searches with Pulsar Timing Arrays. Astrophys. J. 2021, 921, 178. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Mangiagli, A.; Caprini, C.; Volonteri, M.; Marsat, S.; Vergani, S.; Tamanini, N.; Inchauspé, H. Massive black hole binaries in LISA: Multimessenger prospects and electromagnetic counterparts. Phys. Rev. D 2022, 106, 103017. [Google Scholar] [CrossRef]
- Barausse, E.; Dey, K.; Crisostomi, M.; Panayada, A.; Marsat, S.; Basak, S. The PTA detections: Implications for LISA massive black hole mergers. arXiv 2023, arXiv:2307.12245. [Google Scholar]
- Mangiagli, A.; Klein, A.; Bonetti, M.; Katz, M.L.; Sesana, A.; Volonteri, M.; Colpi, M.; Marsat, S.; Babak, S. Observing the inspiral of coalescing massive black hole binaries with LISA in the era of multimessenger astrophysics. Phys. Rev. D 2020, 102, 084056. [Google Scholar] [CrossRef]
- Bowen, D.B.; Mewes, V.; Noble, S.C.; Avara, M.; Campanelli, M.; Krolik, J.H. Quasi-periodicity of Supermassive Binary Black Hole Accretion Approaching Merger. Astrophys. J. 2019, 879, 76. [Google Scholar] [CrossRef]
- Lops, G.; Izquierdo-Villalba, D.; Colpi, M.; Bonoli, S.; Sesana, A.; Mangiagli, A. Galaxy fields of LISA massive black hole mergers in a simulated universe. Mon. Not. R. Astron. Soc. 2023, 519, 5962–5986. [Google Scholar] [CrossRef]
- Piro, L.; Colpi, M.; Aird, J.; Mangiagli, A.; Fabian, A.C.; Guainazzi, M.; Marsat, S.; Sesana, A.; McNamara, P.; Bonetti, M.; et al. Chasing supermassive black hole merging events with Athena and LISA. Mon. Not. R. Astron. Soc. 2023, 521, 2577–2592. [Google Scholar] [CrossRef]
- Yuan, C.; Murase, K.; Zhang, B.T.; Kimura, S.S.; Mészáros, P. Post-merger Jets from Supermassive Black Hole Coalescences as Electromagnetic Counterparts of Gravitational Wave Emission. Astrophys. J. Lett. 2021, 911, L15. [Google Scholar] [CrossRef]
- Rossi, E.M.; Lodato, G.; Armitage, P.J.; Pringle, J.E.; King, A.R. Black hole mergers: The first light. Mon. Not. R. Astron. Soc. 2010, 401, 2021–2035. [Google Scholar] [CrossRef]
- Stroeer, A.; Vecchio, A. The LISA verification binaries. Class. Quantum Gravity 2006, 23, S809–S817. [Google Scholar] [CrossRef]
- Tamanini, N.; Caprini, C.; Barausse, E.; Sesana, A.; Klein, A.; Petiteau, A. Science with the space-based interferometer eLISA. III: Probing the expansion of the universe using gravitational wave standard sirens. J. Cosmol. Astropart. Phys. 2016, 2016, 002. [Google Scholar] [CrossRef]
- Haiman, Z. Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral. Phys. Rev. D 2017, 96, 023004. [Google Scholar] [CrossRef]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef]
- Sonneborn, G.; Altner, B.; Kirshner, R.P. The Progenitor of SN 1987A: Spatially Resolved Ultraviolet Spectroscopy of the Supernova Field. Astrophys. J. Lett. 1987, 323, L35. [Google Scholar] [CrossRef]
- Walborn, N.R.; Lasker, B.M.; Laidler, V.G.; Chu, Y.H. The Composite Image of Sanduleak -69 degrees 202, Candidate Precursor to Supernova 1978A in the Large Magellanic Cloud. Astrophys. J. Lett. 1987, 321, L41. [Google Scholar] [CrossRef]
- Van Dyk, S.D.; Zheng, W.; Fox, O.D.; Cenko, S.B.; Clubb, K.I.; Filippenko, A.V.; Foley, R.J.; Miller, A.A.; Smith, N.; Kelly, P.L.; et al. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor. Astron. J. 2014, 147, 37. [Google Scholar] [CrossRef]
- Tartaglia, L.; Fraser, M.; Sand, D.J.; Valenti, S.; Smartt, S.J.; McCully, C.; Anderson, J.P.; Arcavi, I.; Elias-Rosa, N.; Galbany, L.; et al. The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophys. J. Lett. 2017, 836, L12. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Foley, R.J.; Abramson, L.E.; Pan, Y.C.; Lu, C.X.; Williams, P.; Treu, T.; Siebert, M.R.; Fassnacht, C.D.; Max, C.E. On the progenitor of the Type IIb supernova 2016gkg. Mon. Not. R. Astron. Soc. 2017, 465, 4650–4657. [Google Scholar] [CrossRef]
- Folatelli, G.; Van Dyk, S.D.; Kuncarayakti, H.; Maeda, K.; Bersten, M.C.; Nomoto, K.; Pignata, G.; Hamuy, M.; Quimby, R.M.; Zheng, W.; et al. Disappearance of the Progenitor of Supernova iPTF13bvn. Astrophys. J. Lett. 2016, 825, L22. [Google Scholar] [CrossRef]
- Nakar, E.; Sari, R. Early Supernovae Light Curves Following the Shock Breakout. Astrophys. J. 2010, 725, 904–921. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. Annu. Rev. Astron. Astrophys. 2014, 52, 487–528. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Thermal and Non-thermal Emission from Circumstellar Interaction. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 875. [Google Scholar] [CrossRef]
- Chandra, P. Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective. Space Science Rev. 2018, 214, 27. [Google Scholar] [CrossRef]
- Dwarkadas, V.V.; Gruszko, J. What are published X-ray light curves telling us about young supernova expansion? Mon. Not. R. Astron. Soc. 2012, 419, 1515–1524. [Google Scholar] [CrossRef]
- Chandra, P.; Chevalier, R.A.; Chugai, N.; Fransson, C.; Soderberg, A.M. X-ray and Radio Emission from Type IIn Supernova SN 2010jl. Astrophys. J. 2015, 810, 32. [Google Scholar] [CrossRef]
- Dwarkadas, V.V.; Romero-Cañizales, C.; Reddy, R.; Bauer, F.E. X-ray and radio emission from the luminous supernova 2005kd. Mon. Not. R. Astron. Soc. 2016, 462, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Katsuda, S.; Maeda, K.; Bamba, A.; Terada, Y.; Fukazawa, Y.; Kawabata, K.; Ohno, M.; Sugawara, Y.; Tsuboi, Y.; Immler, S. Two Distinct-absorption X-ray Components from Type IIn Supernovae: Evidence for Asphericity in the Circumstellar Medium. Astrophys. J. 2016, 832, 194. [Google Scholar] [CrossRef]
- Brethauer, D.; Margutti, R.; Milisavljevic, D.; Bietenholz, M.F.; Chornock, R.; Coppejans, D.L.; De Colle, F.; Hajela, A.; Terreran, G.; Vargas, F.; et al. Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. Astrophys. J. 2022, 939, 105. [Google Scholar] [CrossRef]
- Margalit, B.; Quataert, E.; Ho, A.Y.Q. Optical to X-ray Signatures of Dense Circumstellar Interaction in Core-collapse Supernovae. Astrophys. J. 2022, 928, 122. [Google Scholar] [CrossRef]
- Vargas, F.; De Colle, F.; Brethauer, D.; Margutti, R.; Bernal, C.G. Survival of the Fittest: Numerical Modeling of SN 2014C. Astrophys. J. 2022, 930, 150. [Google Scholar] [CrossRef]
- Pooley, D.; Lewin, W.H.G.; Fox, D.W.; Miller, J.M.; Lacey, C.K.; Van Dyk, S.D.; Weiler, K.W.; Sramek, R.A.; Filippenko, A.V.; Leonard, D.C.; et al. X-ray, Optical, and Radio Observations of the Type II Supernovae 1999em and 1998S. Astrophys. J. 2002, 572, 932–943. [Google Scholar] [CrossRef]
- Chandra, P.; Ray, A.; Schlegel, E.M.; Sutaria, F.K.; Pietsch, W. Chandra’s Tryst with SN 1995N. Astrophys. J. 2005, 629, 933–943. [Google Scholar] [CrossRef]
- Foley, R.J.; Smith, N.; Ganeshalingam, M.; Li, W.; Chornock, R.; Filippenko, A.V. SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium. Astrophys. J. Lett. 2007, 657, L105–L108. [Google Scholar] [CrossRef]
- Perley, D.A.; Sollerman, J.; Schulze, S.; Yao, Y.; Fremling, C.; Gal-Yam, A.; Ho, A.Y.Q.; Yang, Y.; Kool, E.C.; Irani, I.; et al. The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf-Rayet Stars. Astrophys. J. 2022, 927, 180. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Bruch, R.; Schulze, S.; Yang, Y.; Perley, D.A.; Irani, I.; Sollerman, J.; Kool, E.C.; Soumagnac, M.T.; Yaron, O.; et al. A WC/WO star exploding within an expanding carbon-oxygen-neon nebula. Nature 2022, 601, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Immler, S.; Modjaz, M.; Landsman, W.; Bufano, F.; Brown, P.J.; Milne, P.; Dessart, L.; Holland, S.T.; Koss, M.; Pooley, D.; et al. Swift and Chandra Detections of Supernova 2006jc: Evidence for Interaction of the Supernova Shock with a Circumstellar Shell. Astrophys. J. Lett. 2008, 674, L85. [Google Scholar] [CrossRef]
- Ofek, E.O.; Fox, D.; Cenko, S.B.; Sullivan, M.; Gnat, O.; Frail, D.A.; Horesh, A.; Corsi, A.; Quimby, R.M.; Gehrels, N.; et al. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shocks. Astrophys. J. 2013, 763, 42. [Google Scholar] [CrossRef]
- Yao, Y.; Ho, A.Y.Q.; Medvedev, P.; Nayana, A.J.; Perley, D.A.; Kulkarni, S.R.; Chandra, P.; Sazonov, S.; Gilfanov, M.; Khorunzhev, G.; et al. The X-ray and Radio Loud Fast Blue Optical Transient AT2020mrf: Implications for an Emerging Class of Engine-driven Massive Star Explosions. Astrophys. J. 2022, 934, 104. [Google Scholar] [CrossRef]
- Misra, K.; Pooley, D.; Chandra, P.; Bhattacharya, D.; Ray, A.K.; Sagar, R.; Lewin, W.H.G. Type IIP supernova SN 2004et: A multiwavelength study in X-ray, optical and radio. Mon. Not. R. Astron. Soc. 2007, 381, 280–292. [Google Scholar] [CrossRef]
- Chakraborti, S.; Yadav, N.; Ray, A.; Smith, R.; Chandra, P.; Pooley, D. X-ray Emission from SN 2004dj: A Tale of Two Shocks. Astrophys. J. 2012, 761, 100. [Google Scholar] [CrossRef]
- Chakraborti, S.; Ray, A.; Smith, R.; Margutti, R.; Pooley, D.; Bose, S.; Sutaria, F.; Chandra, P.; Dwarkadas, V.V.; Ryder, S.; et al. Probing Final Stages of Stellar Evolution with X-ray Observations of SN 2013ej. Astrophys. J. 2016, 817, 22. [Google Scholar] [CrossRef]
- Frank, K.A.; Zhekov, S.A.; Park, S.; McCray, R.; Dwek, E.; Burrows, D.N. Chandra Observes the End of an Era in SN 1987A. Astrophys. J. 2016, 829, 40. [Google Scholar] [CrossRef]
- Zhang, B. The Physics of Gamma-ray Bursts; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Rivera Sandoval, L.E.; Maccarone, T.J.; Corsi, A.; Brown, P.J.; Pooley, D.; Wheeler, J.C. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 2018, 480, L146–L150. [Google Scholar] [CrossRef]
- Margutti, R.; Metzger, B.D.; Chornock, R.; Vurm, I.; Roth, N.; Grefenstette, B.W.; Savchenko, V.; Cartier, R.; Steiner, J.F.; Terreran, G.; et al. An Embedded X-ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophys. J. 2019, 872, 18. [Google Scholar] [CrossRef]
- Coppejans, D.L.; Margutti, R.; Terreran, G.; Nayana, A.J.; Coughlin, E.R.; Laskar, T.; Alexander, K.D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; et al. A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy. Astrophys. J. Lett. 2020, 895, L23. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Perley, D.A.; Kulkarni, S.R.; Dong, D.Z.J.; De, K.; Chandra, P.; Andreoni, I.; Bellm, E.C.; Burdge, K.B.; Coughlin, M.; et al. The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27. Astrophys. J. 2020, 895, 49. [Google Scholar] [CrossRef]
- Pasham, D.R.; Ho, W.C.G.; Alston, W.; Remillard, R.; Ng, M.; Gendreau, K.; Metzger, B.D.; Altamirano, D.; Chakrabarty, D.; Fabian, A.; et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 2021, 6, 249–258. [Google Scholar] [CrossRef]
- Bright, J.S.; Margutti, R.; Matthews, D.; Brethauer, D.; Coppejans, D.; Wieringa, M.H.; Metzger, B.D.; DeMarchi, L.; Laskar, T.; Romero, C.; et al. Radio and X-ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd. Astrophys. J. 2022, 926, 112. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Margalit, B.; Bremer, M.; Perley, D.A.; Yao, Y.; Dobie, D.; Kaplan, D.L.; O’Brien, A.; Petitpas, G.; Zic, A. Luminous Millimeter, Radio, and X-ray Emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 2022, 932, 116. [Google Scholar] [CrossRef]
- Ho, A.Y.Q.; Perley, D.A.; Filippenko, A.V.; Zheng, W.; Brink, T.G.; Li, M.; Wang, K. Keck/LRIS Observations of AT2022tsd, a Fast-Rising Optical Transient Coincident with a z=0.256 Galaxy. Transient Name Serv. Astronote 2022, 199, 1. [Google Scholar]
- Matthews, D.; Margutti, R.; Metzger, B.D.; Milisavljevic, D.; Migliori, G.; Laskar, T.; Brethauer, D.; Berger, E.; Chornock, R.; Drout, M.; et al. Unprecedented X-ray Emission from the Fast Blue Optical Transient AT2022tsd. Res. Notes Am. Astron. Soc. 2023, 7, 126. [Google Scholar] [CrossRef]
- Perley, D.A.; Mazzali, P.A.; Yan, L.; Cenko, S.B.; Gezari, S.; Taggart, K.; Blagorodnova, N.; Fremling, C.; Mockler, B.; Singh, A.; et al. The fast, luminous ultraviolet transient AT2018cow: Extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 2019, 484, 1031–1049. [Google Scholar] [CrossRef]
- Kremer, K.; Lu, W.; Piro, A.L.; Chatterjee, S.; Rasio, F.A.; Ye, C.S. Fast Optical Transients from Stellar-mass Black Hole Tidal Disruption Events in Young Star Clusters. Astrophys. J. 2021, 911, 104. [Google Scholar] [CrossRef]
- Metzger, B.D. Luminous Fast Blue Optical Transients and Type Ibn/Icn SNe from Wolf-Rayet/Black Hole Mergers. arXiv 2022, arXiv:2203.04331. [Google Scholar]
- Rees, M.J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 1988, 333, 523–528. [Google Scholar] [CrossRef]
- Phinney, E.S. Manifestations of a Massive Black Hole in the Galactic Center. In Proceedings of the Center of the Galaxy; Morris, M., Ed.; Cambridge University Press: Cambridge, UK, 1989; Volume 136, p. 543. Available online: https://ui.adsabs.harvard.edu/abs/1989IAUS..136..543P/abstract (accessed on 29 July 2024).
- Ho, A.Y.Q.; Perley, D.A.; Gal-Yam, A.; Lunnan, R.; Sollerman, J.; Schulze, S.; Das, K.K.; Dobie, D.; Yao, Y.; Fremling, C.; et al. A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients. Astrophys. J. 2023, 949, 120. [Google Scholar] [CrossRef]
- Perley, D.A.; Fremling, C.; Sollerman, J.; Miller, A.A.; Dahiwale, A.S.; Sharma, Y.; Bellm, E.C.; Biswas, R.; Brink, T.G.; Bruch, R.J.; et al. The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics. Astrophys. J. 2020, 904, 35. [Google Scholar] [CrossRef]
- Ulmer, A. Flares from the Tidal Disruption of Stars by Massive Black Holes. Astrophys. J. 1999, 514, 180–187. [Google Scholar] [CrossRef]
- Gezari, S. Tidal Disruption Events. Annu. Rev. Astron. Astrophys. 2021, 59, 21–58. [Google Scholar] [CrossRef]
- De Colle, F.; Lu, W. Jets from Tidal Disruption Events. New A Rev. 2020, 89, 101538. [Google Scholar] [CrossRef]
- Ohsuga, K.; Mineshige, S. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations. Astrophys. J. 2011, 736, 2. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Stone, J.M.; Davis, S.W. A Global Three-dimensional Radiation Magneto-hydrodynamic Simulation of Super-Eddington Accretion Disks. Astrophys. J. 2014, 796, 106. [Google Scholar] [CrossRef]
- Sądowski, A.; Narayan, R. Three-dimensional simulations of supercritical black hole accretion discs-luminosities, photon trapping and variability. Mon. Not. R. Astron. Soc. 2016, 456, 3929–3947. [Google Scholar] [CrossRef]
- Curd, B.; Narayan, R. GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: Jet formation, spectra, and detectability. Mon. Not. R. Astron. Soc. 2019, 483, 565–592. [Google Scholar] [CrossRef]
- Kara, E.; Dai, L.; Reynolds, C.S.; Kallman, T. Ultrafast outflow in tidal disruption event ASASSN-14li. Mon. Not. R. Astron. Soc. 2018, 474, 3593–3598. [Google Scholar] [CrossRef]
- Kato, S.; Fukue, J.; Mineshige, S. Black-Hole Accretion Disks—Towards a New Paradigm; Kyoto University Press: Kyoto, Japan, 2008. [Google Scholar]
- Tchekhovskoy, A.; Metzger, B.D.; Giannios, D.; Kelley, L.Z. Swift J1644+57 gone MAD: The case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 2014, 437, 2744–2760. [Google Scholar] [CrossRef]
- Shen, R.F.; Matzner, C.D. Evolution of Accretion Disks in Tidal Disruption Events. Astrophys. J. 2014, 784, 87. [Google Scholar] [CrossRef]
- Lu, W. Accretion Disk Evolution in Tidal Disruption Events. In Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C., Santangelo, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; p. 3. [Google Scholar] [CrossRef]
- Zauderer, B.A.; Berger, E.; Margutti, R.; Pooley, G.G.; Sari, R.; Soderberg, A.M.; Brunthaler, A.; Bietenholz, M.F. Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. II. The Relativistic Jet Shuts Off and a Transition to Forward Shock X-ray/Radio Emission. Astrophys. J. 2013, 767, 152. [Google Scholar] [CrossRef]
- Pasham, D.R.; Cenko, S.B.; Levan, A.J.; Bower, G.C.; Horesh, A.; Brown, G.C.; Dolan, S.; Wiersema, K.; Filippenko, A.V.; Fruchter, A.S.; et al. A Multiwavelength Study of the Relativistic Tidal Disruption Candidate Swift J2058.4+0516 at Late Times. Astrophys. J. 2015, 805, 68. [Google Scholar] [CrossRef]
- Wevers, T.; Pasham, D.R.; van Velzen, S.; Miller-Jones, J.C.A.; Uttley, P.; Gendreau, K.C.; Remillard, R.; Arzoumanian, Z.; Löwenstein, M.; Chiti, A. Rapid Accretion State Transitions following the Tidal Disruption Event AT2018fyk. Astrophys. J. 2021, 912, 151. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, W.; Guolo, M.; Pasham, D.R.; Gezari, S.; Gilfanov, M.; Gendreau, K.C.; Harrison, F.; Cenko, S.B.; Kulkarni, S.R.; et al. The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System. Astrophys. J. 2022, 937, 8. [Google Scholar] [CrossRef]
- Brown, J.S.; Holoien, T.W.S.; Auchettl, K.; Stanek, K.Z.; Kochanek, C.S.; Shappee, B.J.; Prieto, J.L.; Grupe, D. The Long Term Evolution of ASASSN-14li. Mon. Not. R. Astron. Soc. 2017, 466, 4904–4916. [Google Scholar] [CrossRef]
- Reis, R.C.; Miller, J.M.; Reynolds, M.T.; Gültekin, K.; Maitra, D.; King, A.L.; Strohmayer, T.E. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole. Science 2012, 337, 949. [Google Scholar] [CrossRef] [PubMed]
- Pasham, D.R.; Remillard, R.A.; Fragile, P.C.; Franchini, A.; Stone, N.C.; Lodato, G.; Homan, J.; Chakrabarty, D.; Baganoff, F.K.; Steiner, J.F.; et al. A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. Science 2019, 363, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C.; Trakhtenbrot, B. Changing-look Active Galactic Nuclei. arXiv 2022, arXiv:2211.05132. [Google Scholar]
- Matt, G.; Guainazzi, M.; Maiolino, R. Changing look: From Compton-thick to Compton-thin, or the rebirth of fossil active galactic nuclei. Mon. Not. R. Astron. Soc. 2003, 342, 422–426. [Google Scholar] [CrossRef]
- Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A. Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365. Astrophys. J. Lett. 2005, 623, L93–L96. [Google Scholar] [CrossRef]
- Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.; Salvati, M. Occultation Measurement of the Size of the X-ray-emitting Region in the Active Galactic Nucleus of NGC 1365. Astrophys. J. Lett. 2007, 659, L111–L114. [Google Scholar] [CrossRef]
- Risaliti, G.; Salvati, M.; Elvis, M.; Fabbiano, G.; Baldi, A.; Bianchi, S.; Braito, V.; Guainazzi, M.; Matt, G.; Miniutti, G.; et al. The XMM-Newton long look of NGC 1365: Uncovering of the obscured X-ray source. Mon. Not. R. Astron. Soc. 2009, 393, L1–L5. [Google Scholar] [CrossRef]
- Maiolino, R.; Risaliti, G.; Salvati, M.; Pietrini, P.; Torricelli-Ciamponi, G.; Elvis, M.; Fabbiano, G.; Braito, V.; Reeves, J. “Comets” orbiting a black hole. Astron. Astrophys. 2010, 517, A47. [Google Scholar] [CrossRef]
- Markowitz, A.G.; Krumpe, M.; Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: Eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 2014, 439, 1403–1458. [Google Scholar] [CrossRef]
- Zaino, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Bauer, F.E.; Brandt, W.N.; Gandhi, P.; Guainazzi, M.; Iwasawa, K.; Puccetti, S.; et al. Probing the circumnuclear absorbing medium of the buried AGN in NGC 1068 through NuSTAR observations. Mon. Not. R. Astron. Soc. 2020, 492, 3872–3884. [Google Scholar] [CrossRef]
- Trakhtenbrot, B.; Arcavi, I.; MacLeod, C.L.; Ricci, C.; Kara, E.; Graham, M.L.; Stern, D.; Harrison, F.A.; Burke, J.; Hiramatsu, D.; et al. 1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months. Astrophys. J. 2019, 883, 94. [Google Scholar] [CrossRef]
- Ricci, C.; Kara, E.; Loewenstein, M.; Trakhtenbrot, B.; Arcavi, I.; Remillard, R.; Fabian, A.C.; Gendreau, K.C.; Arzoumanian, Z.; Li, R.; et al. The Destruction and Recreation of the X-ray Corona in a Changing-look Active Galactic Nucleus. Astrophys. J. Lett. 2020, 898, L1. [Google Scholar] [CrossRef]
- Laha, S.; Meyer, E.; Roychowdhury, A.; Becerra Gonzalez, J.; Acosta-Pulido, J.A.; Thapa, A.; Ghosh, R.; Behar, E.; Gallo, L.C.; Kriss, G.A.; et al. A Radio, Optical, UV, and X-ray View of the Enigmatic Changing-look Active Galactic Nucleus 1ES 1927+654 from Its Pre- to Postflare States. Astrophys. J. 2022, 931, 5. [Google Scholar] [CrossRef]
- Temple, M.J.; Ricci, C.; Koss, M.J.; Trakhtenbrot, B.; Bauer, F.E.; Mushotzky, R.; Rojas, A.F.; Caglar, T.; Harrison, F.; Oh, K.; et al. BASS XXXIX: Swift-BAT AGN with changing-look optical spectra. Mon. Not. R. Astron. Soc. 2023, 518, 2938–2953. [Google Scholar] [CrossRef]
- Miniutti, G.; Saxton, R.D.; Giustini, M.; Alexander, K.D.; Fender, R.P.; Heywood, I.; Monageng, I.; Coriat, M.; Tzioumis, A.K.; Read, A.M.; et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 2019, 573, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Giustini, M.; Miniutti, G.; Saxton, R.D. X-ray quasi-periodic eruptions from the galactic nucleus of RX J1301.9+2747. Astron. Astrophys. 2020, 636, L2. [Google Scholar] [CrossRef]
- Arcodia, R.; Merloni, A.; Nandra, K.; Buchner, J.; Salvato, M.; Pasham, D.; Remillard, R.; Comparat, J.; Lamer, G.; Ponti, G.; et al. X-ray quasi-periodic eruptions from two previously quiescent galaxies. Nature 2021, 592, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Arcodia, R.; Miniutti, G.; Ponti, G.; Buchner, J.; Giustini, M.; Merloni, A.; Nandra, K.; Vincentelli, F.; Kara, E.; Salvato, M.; et al. The complex time and energy evolution of quasi-periodic eruptions in eRO-QPE1. Astron. Astrophys. 2022, 662, A49. [Google Scholar] [CrossRef]
- Wevers, T.; Pasham, D.R.; Jalan, P.; Rakshit, S.; Arcodia, R. Host galaxy properties of quasi-periodically erupting X-ray sources. Astron. Astrophys. 2022, 659, L2. [Google Scholar] [CrossRef]
- Miniutti, G.; Giustini, M.; Arcodia, R.; Saxton, R.D.; Read, A.M.; Bianchi, S.; Alexander, K.D. Repeating tidal disruptions in GSN 069: Long-term evolution and constraints on quasi-periodic eruptions’ models. Astron. Astrophys. 2023, 670, A93. [Google Scholar] [CrossRef]
- Chakraborty, J.; Kara, E.; Masterson, M.; Giustini, M.; Miniutti, G.; Saxton, R. Possible X-ray Quasi-periodic Eruptions in a Tidal Disruption Event Candidate. Astrophys. J. Lett. 2021, 921, L40. [Google Scholar] [CrossRef]
- Quintin, E.; Webb, N.A.; Guillot, S.; Miniutti, G.; Kammoun, E.S.; Giustini, M.; Arcodia, R.; Soucail, G.; Clerc, N.; Amato, R.; et al. Tormund’s return: Hints of quasi-periodic eruption features from a recent optical tidal disruption event. arXiv 2023, arXiv:2306.00438. [Google Scholar]
- Sniegowska, M.; Czerny, B.; Bon, E.; Bon, N. Possible mechanism for multiple changing-look phenomena in active galactic nuclei. Astron. Astrophys. 2020, 641, A167. [Google Scholar] [CrossRef]
- Śniegowska, M.; Grzȩdzielski, M.; Czerny, B.; Janiuk, A. Modified models of radiation pressure instability applied to 10, 105, and 107 M⊙ accreting black holes. Astron. Astrophys. 2023, 672, A19. [Google Scholar] [CrossRef]
- Kaur, K.; Stone, N.C.; Gilbaum, S. Magnetically dominated discs in tidal disruption events and quasi-periodic eruptions. Mon. Not. R. Astron. Soc. 2023, 524, 1269–1290. [Google Scholar] [CrossRef]
- Pan, X.; Li, S.L.; Cao, X. Application of the Disk Instability Model to All Quasiperiodic Eruptions. Astrophys. J. 2023, 952, 32. [Google Scholar] [CrossRef]
- King, A. GSN 069 - A tidal disruption near miss. Mon. Not. R. Astron. Soc. 2020, 493, L120–L123. [Google Scholar] [CrossRef]
- King, A. Quasi-periodic eruptions from galaxy nuclei. Mon. Not. R. Astron. Soc. 2022, 515, 4344–4349. [Google Scholar] [CrossRef]
- Suková, P.; Zajaček, M.; Witzany, V.; Karas, V. Stellar Transits across a Magnetized Accretion Torus as a Mechanism for Plasmoid Ejection. Astrophys. J. 2021, 917, 43. [Google Scholar] [CrossRef]
- Xian, J.; Zhang, F.; Dou, L.; He, J.; Shu, X. X-ray Quasi-periodic Eruptions Driven by Star-Disk Collisions: Application to GSN069 and Probing the Spin of Massive Black Holes. Astrophys. J. Lett. 2021, 921, L32. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, Y.Y.; Zou, Y.C.; Wang, F.Y.; Dai, Z.G. Quasi-periodic eruptions from the helium envelope of hydrogen-deficient stars stripped by supermassive black holes. Astron. Astrophys. 2022, 661, A55. [Google Scholar] [CrossRef]
- Wang, M.; Yin, J.; Ma, Y.; Wu, Q. A Model for the Possible Connection Between a Tidal Disruption Event and Quasi-periodic Eruption in GSN 069. Astrophys. J. 2022, 933, 225. [Google Scholar] [CrossRef]
- Metzger, B.D.; Stone, N.C.; Gilbaum, S. Interacting Stellar EMRIs as Sources of Quasi-periodic Eruptions in Galactic Nuclei. Astrophys. J. 2022, 926, 101. [Google Scholar] [CrossRef]
- Krolik, J.H.; Linial, I. Quasiperiodic Erupters: A Stellar Mass-transfer Model for the Radiation. Astrophys. J. 2022, 941, 24. [Google Scholar] [CrossRef]
- Lu, W.; Quataert, E. Quasi-periodic eruptions from mildly eccentric unstable mass transfer in galactic nuclei. Mon. Not. R. Astron. Soc. 2023. [Google Scholar] [CrossRef]
- Linial, I.; Metzger, B.D. EMRI + TDE = QPE: Periodic X-ray Flares from Star-Disk Collisions in Galactic Nuclei. arXiv 2023, arXiv:2303.16231. [Google Scholar]
- Linial, I.; Sari, R. Unstable Mass Transfer from a Main-sequence Star to a Supermassive Black Hole and Quasiperiodic Eruptions. Astrophys. J. 2023, 945, 86. [Google Scholar] [CrossRef]
- Franchini, A.; Bonetti, M.; Lupi, A.; Miniutti, G.; Bortolas, E.; Giustini, M.; Dotti, M.; Sesana, A.; Arcodia, R.; Ryu, T. QPEs from impacts between the secondary and a rigidly precessing accretion disc in an EMRI system. arXiv 2023, arXiv:2304.00775. [Google Scholar]
- Tagawa, H.; Haiman, Z. Flares from stars crossing active galactic nuclei disks on low-inclination orbits. arXiv 2023, arXiv:2304.03670. [Google Scholar]
- Sheng, Z.; Wang, T.; Ferland, G.; Shu, X.; Yang, C.; Jiang, N.; Chen, Y. Evidence of a Tidal-disruption Event in GSN 069 from the Abnormal Carbon and Nitrogen Abundance Ratio. Astrophys. J. Lett. 2021, 920, L25. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef]
- Burns, E.; Svinkin, D.; Hurley, K.; Wadiasingh, Z.; Negro, M.; Younes, G.; Hamburg, R.; Ridnaia, A.; Cook, D.; Cenko, S.B.; et al. Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. Astrophys. J. Lett. 2021, 907, L28. [Google Scholar] [CrossRef]
- Israel, G.L.; Belloni, T.; Stella, L.; Rephaeli, Y.; Gruber, D.E.; Casella, P.; Dall’Osso, S.; Rea, N.; Persic, M.; Rothschild, R.E. The Discovery of Rapid X-ray Oscillations in the Tail of the SGR 1806-20 Hyperflare. Astrophys. J. Lett. 2005, 628, L53–L56. [Google Scholar] [CrossRef]
- Strohmayer, T.E.; Watts, A.L. Discovery of Fast X-ray Oscillations during the 1998 Giant Flare from SGR 1900+14. Astrophys. J. Lett. 2005, 632, L111–L114. [Google Scholar] [CrossRef]
- Watts, A.L.; Strohmayer, T.E. Detection with RHESSI of High-Frequency X-ray Oscillations in the Tailof the 2004 Hyperflare from SGR 1806-20. Astrophys. J. Lett. 2006, 637, L117–L120. [Google Scholar] [CrossRef]
- Watts, A.L.; Strohmayer, T.E. High frequency oscillations during magnetar flares. Astrophys. Space Sci. 2007, 308, 625–629. [Google Scholar] [CrossRef]
- Huppenkothen, D.; Heil, L.M.; Watts, A.L.; Göğüş, E. Quasi-periodic Oscillations in Short Recurring Bursts of Magnetars SGR 1806-20 and SGR 1900+14 Observed with RXTE. Astrophys. J. 2014, 795, 114. [Google Scholar] [CrossRef]
- Güver, T.; Özel, F.; Göğüş, E.; Kouveliotou, C. The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar. Astrophys. J. 2007, 667, L73. [Google Scholar] [CrossRef]
- Woods, P.M.; Kouveliotou, C.; Finger, M.H.; Göǧüş, E.; Wilson, C.A.; Patel, S.K.; Hurley, K.; Swank, J.H. The Prelude to and Aftermath of the Giant Flare of 2004 December 27: Persistent and Pulsed X-ray Properties of SGR 1806-20 from 1993 to 2005. Astrophys. J. 2007, 654, 470–486. [Google Scholar] [CrossRef]
- Ng, C.Y.; Kaspi, V.M.; Dib, R.; Olausen, S.A.; Scholz, P.; Güver, T.; Özel, F.; Gavriil, F.P.; Woods, P.M. Chandra and RXTE Observations of 1E 1547.0-5408: Comparing the 2008 and 2009 Outbursts. Astrophys. J. 2011, 729, 131. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M.; et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 2021, 5, 372–377. [Google Scholar] [CrossRef]
- Tiengo, A.; Vianello, G.; Esposito, P.; Mereghetti, S.; Giuliani, A.; Costantini, E.; Israel, G.L.; Stella, L.; Turolla, R.; Zane, S.; et al. The Dust-scattering X-ray Rings of the Anomalous X-ray Pulsar 1E 1547.0-5408. Astrophys. J. 2010, 710, 227–235. [Google Scholar] [CrossRef]
- Younes, G.; Kouveliotou, C.; Kargaltsev, O.; Gill, R.; Granot, J.; Watts, A.L.; Gelfand, J.; Baring, M.G.; Harding, A.; Pavlov, G.G.; et al. The wind nebula around magnetar swift J1834.9–0846. Astrophys. J. 2016, 824, 138. [Google Scholar] [CrossRef]
- Grimm, H.J.; Gilfanov, M.; Sunyaev, R. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon. Not. R. Astron. Soc. 2003, 339, 793–809. [Google Scholar] [CrossRef]
- Fragos, T.; Lehmer, B.; Tremmel, M.; Tzanavaris, P.; Basu-Zych, A.; Belczynski, K.; Hornschemeier, A.; Jenkins, L.; Kalogera, V.; Ptak, A.; et al. X-ray Binary Evolution Across Cosmic Time. Astrophys. J. 2013, 764, 41. [Google Scholar] [CrossRef]
- Gilfanov, M. Low-mass X-ray binaries as a stellar mass indicator for the host galaxy. Mon. Not. R. Astron. Soc. 2004, 349, 146–168. [Google Scholar] [CrossRef]
- Mirabel, I.F.; Dijkstra, M.; Laurent, P.; Loeb, A.; Pritchard, J.R. Stellar black holes at the dawn of the universe. Astron. Astrophys. 2011, 528, A149. [Google Scholar] [CrossRef]
- Fragos, T.; Lehmer, B.D.; Naoz, S.; Zezas, A.; Basu-Zych, A. Energy Feedback from X-ray Binaries in the Early Universe. Astrophys. J. Lett. 2013, 776, L31. [Google Scholar] [CrossRef]
- Liu, B.; Sartorio, N.S.; Izzard, R.G.; Fialkov, A. Population synthesis of Be X-ray binaries: Metallicity dependence of total X-ray outputs. arXiv 2023, arXiv:2308.06154. [Google Scholar]
- Antoniou, V.; Zezas, A.; Hatzidimitriou, D.; Kalogera, V. Star Formation History and X-ray Binary Populations: The Case of the Small Magellanic Cloud. Astrophys. J. Lett. 2010, 716, L140–L145. [Google Scholar] [CrossRef]
- Lehmer, B.D.; Eufrasio, R.T.; Basu-Zych, A.; Doore, K.; Fragos, T.; Garofali, K.; Kovlakas, K.; Williams, B.F.; Zezas, A.; Santana-Silva, L. The Metallicity Dependence of the High-mass X-ray Binary Luminosity Function. Astrophys. J. 2021, 907, 17. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Stanway, E.R. New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies. Annu. Rev. Astron. Astrophys. 2022, 60, 455–494. [Google Scholar] [CrossRef]
- Fornasini, F.M.; Antoniou, V.; Dubus, G. High-mass X-ray Binaries. arXiv 2023, arXiv:2308.02645. [Google Scholar]
- Martínez-Núñez, S.; Kretschmar, P.; Bozzo, E.; Oskinova, L.M.; Puls, J.; Sidoli, L.; Sundqvist, J.O.; Blay, P.; Falanga, M.; Fürst, F.; et al. Towards a unified view of inhomogeneous stellar winds in isolated supergiant stars and supergiant high mass X-ray binaries. Space Sci. Rev. 2017, 212, 59–150. [Google Scholar] [CrossRef]
- King, A.; Lasota, J.P.; Middleton, M. Ultraluminous X-ray sources. New A Rev. 2023, 96, 101672. [Google Scholar] [CrossRef]
- Walton, D.J.; Mackenzie, A.D.A.; Gully, H.; Patel, N.R.; Roberts, T.P.; Earnshaw, H.P.; Mateos, S. A multimission catalogue of ultraluminous X-ray source candidates. Mon. Not. R. Astron. Soc. 2022, 509, 1587–1604. [Google Scholar] [CrossRef]
- Barrows, R.S.; Comerford, J.M.; Stern, D.; Heida, M. The Redshift Evolution of Ultraluminous X-ray Sources out to z 0.5: Comparison with X-ray Binary Populations and Contribution to the Cosmic X-ray Background. Astrophys. J. 2022, 932, 27. [Google Scholar] [CrossRef]
- Barrows, R.S.; Mezcua, M.; Comerford, J.M. A Catalog of Hyper-luminous X-ray Sources and Intermediate-mass Black Hole Candidates out to High Redshifts. Astrophys. J. 2019, 882, 181. [Google Scholar] [CrossRef]
- Dage, K.C.; Zepf, S.E.; Thygesen, E.; Bahramian, A.; Kundu, A.; Maccarone, T.J.; Peacock, M.B.; Strader, J. X-ray spectroscopy of newly identified ULXs associated with M87’s globular cluster population. Mon. Not. R. Astron. Soc. 2020, 497, 596–608. [Google Scholar] [CrossRef]
- Usher, C.; Dage, K.C.; Girardi, L.; Barmby, P.; Bonatto, C.J.; Chies-Santos, A.L.; Clarkson, W.I.; Gómez Camus, M.; Hartmann, E.A.; Ferguson, A.M.N.; et al. Rubin Observatory LSST Stars Milky Way and Local Volume Star Clusters Roadmap. Publ. Astron. Soc. Pac. 2023, 135, 074201. [Google Scholar] [CrossRef]
- Belczynski, K.; Romagnolo, A.; Olejak, A.; Klencki, J.; Chattopadhyay, D.; Stevenson, S.; Coleman Miller, M.; Lasota, J.P.; Crowther, P.A. The Uncertain Future of Massive Binaries Obscures the Origin of LIGO/Virgo Sources. Astrophys. J. 2022, 925, 69. [Google Scholar] [CrossRef]
- Belczynski, K.; Klencki, J.; Fields, C.E.; Olejak, A.; Berti, E.; Meynet, G.; Fryer, C.L.; Holz, D.E.; O’Shaughnessy, R.; Brown, D.A.; et al. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron. Astrophys. 2020, 636, A104. [Google Scholar] [CrossRef]
- Brightman, M.; Harrison, F.A.; Fürst, F.; Middleton, M.J.; Walton, D.J.; Stern, D.; Fabian, A.C.; Heida, M.; Barret, D.; Bachetti, M. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nat. Astron. 2018, 2, 312–316. [Google Scholar] [CrossRef]
- Kara, E.; Steiner, J.F.; Fabian, A.C.; Cackett, E.M.; Uttley, P.; Remillard, R.A.; Gendreau, K.C.; Arzoumanian, Z.; Altamirano, D.; Eikenberry, S.; et al. The corona contracts in a black-hole transient. Nature 2019, 565, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, L.; Tao, L.; Bu, Q.C.; Qu, J.L.; Zhang, S.N.; Zhou, D.K.; Huang, Y.; Jia, S.M.; Song, L.M.; et al. A Detailed View of Low-frequency Quasi-periodic Oscillation in the Broadband 0.2–200 keV with Insight-HXMT and NICER. Astrophys. J. 2023, 948, 116. [Google Scholar] [CrossRef]
- Plotkin, R.M.; Miller-Jones, J.C.A.; Gallo, E.; Jonker, P.G.; Homan, J.; Tomsick, J.A.; Kaaret, P.; Russell, D.M.; Heinz, S.; Hodges-Kluck, E.J.; et al. The 2015 Decay of the Black Hole X-ray Binary V404 Cygni: Robust Disk-jet Coupling and a Sharp Transition into Quiescence. Astrophys. J. 2017, 834, 104. [Google Scholar] [CrossRef]
- Plotkin, R.M.; Gallo, E.; Jonker, P.G. The X-ray Spectral Evolution of Galactic Black Hole X-ray Binaries toward Quiescence. Astrophys. J. 2013, 773, 59. [Google Scholar] [CrossRef]
- Qiao, E.; Liu, B.F. A Model for the Correlation of Hard X-ray Index with Eddington Ratio in Black Hole X-ray Binaries. Astrophys. J. 2013, 764, 2. [Google Scholar] [CrossRef]
- Kimura, S.S.; Sudoh, T.; Kashiyama, K.; Kawanaka, N. Magnetically Arrested Disks in Quiescent Black Hole Binaries: Formation Scenario, Observable Signatures, and Potential PeVatrons. Astrophys. J. 2021, 915, 31. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Wijnands, R.; Degenaar, N.; Armas Padilla, M.; Altamirano, D.; Cavecchi, Y.; Linares, M.; Bahramian, A.; Heinke, C.O. Low-level accretion in neutron star X-ray binaries. Mon. Not. R. Astron. Soc. 2015, 454, 1371–1386. [Google Scholar] [CrossRef]
- Armas Padilla, M.; Degenaar, N.; Wijnands, R. The X-ray spectral properties of very-faint persistent neutron star X-ray binaries. Mon. Not. R. Astron. Soc. 2013, 434, 1586–1592. [Google Scholar] [CrossRef]
- Hailey, C.J.; Mori, K.; Bauer, F.E.; Berkowitz, M.E.; Hong, J.; Hord, B.J. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy. Nature 2018, 556, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Nelemans, G.; Yungelson, L.R.; Portegies Zwart, S.F. Short-period AM CVn systems as optical, X-ray and gravitational-wave sources. Mon. Not. R. Astron. Soc. 2004, 349, 181–192. [Google Scholar] [CrossRef]
- Corbel, S.; Fender, R.P.; Tzioumis, A.K.; Tomsick, J.A.; Orosz, J.A.; Miller, J.M.; Wijnands, R.; Kaaret, P. Large-Scale, Decelerating, Relativistic X-ray Jets from the Microquasar XTE J1550-564. Science 2002, 298, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Migliori, G.; Corbel, S.; Tomsick, J.A.; Kaaret, P.; Fender, R.P.; Tzioumis, A.K.; Coriat, M.; Orosz, J.A. Evolving morphology of the large-scale relativistic jets from XTE J1550-564. Mon. Not. R. Astron. Soc. 2017, 472, 141–165. [Google Scholar] [CrossRef]
- Espinasse, M.; Corbel, S.; Kaaret, P.; Tremou, E.; Migliori, G.; Plotkin, R.M.; Bright, J.; Tomsick, J.; Tzioumis, A.; Fender, R.; et al. Relativistic X-ray Jets from the Black Hole X-ray Binary MAXI J1820+070. Astrophys. J. Lett. 2020, 895, L31. [Google Scholar] [CrossRef]
- Costantini, E.; Corrales, L. Interstellar Absorption and Dust Scattering. In Handbook of X-ray and Gamma-ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2022; p. 40. [Google Scholar] [CrossRef]
- Heinz, S.; Corrales, L.; Smith, R.; Brandt, W.N.; Jonker, P.G.; Plotkin, R.M.; Neilsen, J. A Joint Chandra and Swift View of the 2015 X-ray Dust-scattering Echo of V404 Cygni. Astrophys. J. 2016, 825, 15. [Google Scholar] [CrossRef]
- Kalemci, E.; Maccarone, T.J.; Tomsick, J.A. A Dust-scattering Halo of 4U 1630-47 Observed with Chandra and Swift: New Constraints on the Source Distance. Astrophys. J. 2018, 859, 88. [Google Scholar] [CrossRef]
- Vasilopoulos, G.; Karavola, D.; Stathopoulos, S.I.; Petropoulou, M. Dust-scattering rings of GRB 221009A as seen by the Neil Gehrels Swift X-ray Observatory: Can we count them all? Mon. Not. R. Astron. Soc. 2023, 521, 1590–1600. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts at the dawn of the 2020s. Astron. Astrophys. Rev. 2022, 30, 2. [Google Scholar] [CrossRef]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L.; et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. Lett. 2020, 898, L29. [Google Scholar] [CrossRef]
- Cunningham, V.; Cenko, S.B.; Burns, E.; Goldstein, A.; Lien, A.; Kocevski, D.; Briggs, M.; Connaughton, V.; Miller, M.C.; Racusin, J.; et al. A Search for High-energy Counterparts to Fast Radio Bursts. Astrophys. J. 2019, 879, 40. [Google Scholar] [CrossRef]
- Guidorzi, C.; Marongiu, M.; Martone, R.; Nicastro, L.; Xiong, S.L.; Liao, J.Y.; Li, G.; Zhang, S.N.; Amati, L.; Frontera, F.; et al. A search for prompt γ-ray counterparts to fast radio bursts in the Insight-HXMT data. Astron. Astrophys. 2020, 637, A69. [Google Scholar] [CrossRef]
- Scholz, P.; Cook, A.; Cruces, M.; Hessels, J.W.T.; Kaspi, V.M.; Majid, W.A.; Naidu, A.; Pearlman, A.B.; Spitler, L.G.; Bandura, K.M.; et al. Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB∼180916.J0158+65. Astrophys. J. 2020, 901, 165. [Google Scholar] [CrossRef]
- Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 2014, 442, L9–L13. [Google Scholar] [CrossRef]
- Lyutikov, M.; Lorimer, D.R. How Else Can We Detect Fast Radio Bursts? Astrophys. J. Lett. 2016, 824, L18. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, P.; Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 498, 1397–1405. [Google Scholar] [CrossRef]
- Margalit, B.; Beniamini, P.; Sridhar, N.; Metzger, B.D. Implications of a Fast Radio Burst from a Galactic Magnetar. Astrophys. J. Lett. 2020, 899, L27. [Google Scholar] [CrossRef]
- Sridhar, N.; Metzger, B.D. Radio Nebulae from Hyperaccreting X-ray Binaries as Common-envelope Precursors and Persistent Counterparts of Fast Radio Bursts. Astrophys. J. 2022, 937, 5. [Google Scholar] [CrossRef]
- Eftekhari, T.; Fong, W.; Gordon, A.C.; Sridhar, N.; Kilpatrick, C.D.; Bhandari, S.; Deller, A.T.; Dong, Y.; Rouco Escorial, A.; Heintz, K.E.; et al. An X-ray Census of Fast Radio Burst Host Galaxies: Constraints on AGN and X-ray Counterparts. arXiv 2023, arXiv:2307.03766. [Google Scholar]
- Chime/Frb Collaboration; Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F.; et al. Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar] [CrossRef]
- Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F.; et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 2020, 495, 3551–3558. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. First Observation of PeV-Energy Neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103. [Google Scholar] [CrossRef] [PubMed]
- IceCube Collaboration; Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef]
- IceCube Collaboration; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A.J.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, N.; Metzger, B.D.; Fang, K. High-Energy Neutrinos from Gamma-Ray-Faint Accretion-Powered Hypernebulae. arXiv 2022, arXiv:2212.11236. [Google Scholar]
- Stein, R.; Necker, J.; Reusch, S.; Franckowiak, A.; Ravi, V.; Ho, A.Y.Q.; Perley, D.; Kasliwal, M.; Sollerman, J.; Das, K.; et al. IC231004A: Classification of AT2023uqf/ZTF23abidzvf as a rapidly-evolving supernova with CSM interaction. GRB Coord. Netw. 2023, 34837, 1. [Google Scholar]
- de Bruijn, O.; Bartos, I.; Biermann, P.L.; Tjus, J.B. Recurrent Neutrino Emission from Supermassive Black Hole Mergers. Astrophys. J. Lett. 2020, 905, L13. [Google Scholar] [CrossRef]
- Becker Tjus, J.; Jaroschewski, I.; Ghorbanietemad, A.; Bartos, I.; Kun, E.; Biermann, P.L. Neutrino Cadence of TXS 0506+056 Consistent with Supermassive Binary Origin. Astrophys. J. Lett. 2022, 941, L25. [Google Scholar] [CrossRef]
- Murase, K.; Stecker, F.W. High-Energy Neutrinos from Active Galactic Nuclei. arXiv 2022, arXiv:2202.03381. [Google Scholar]
- Kahabka, P. Supersoft X-ray sources. Adv. Space Res. 2006, 38, 2836–2839. [Google Scholar] [CrossRef]
- Mićić, M.; Irwin, J.A.; Lin, D. An Ultraluminous Supersoft Source in a Dwarf Galaxy of A85: An Intermediate-mass Black Hole Candidate. Astrophys. J. 2022, 928, 117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcodia, R.; Bauer, F.E.; Cenko, S.B.; Dage, K.C.; Haggard, D.; Ho, W.C.G.; Kara, E.; Koss, M.; Liu, T.; Mallick, L.; et al. Prospects for Time-Domain and Multi-Messenger Science with AXIS. Universe 2024, 10, 316. https://doi.org/10.3390/universe10080316
Arcodia R, Bauer FE, Cenko SB, Dage KC, Haggard D, Ho WCG, Kara E, Koss M, Liu T, Mallick L, et al. Prospects for Time-Domain and Multi-Messenger Science with AXIS. Universe. 2024; 10(8):316. https://doi.org/10.3390/universe10080316
Chicago/Turabian StyleArcodia, Riccardo, Franz E. Bauer, S. Bradley Cenko, Kristen C. Dage, Daryl Haggard, Wynn C. G. Ho, Erin Kara, Michael Koss, Tingting Liu, Labani Mallick, and et al. 2024. "Prospects for Time-Domain and Multi-Messenger Science with AXIS" Universe 10, no. 8: 316. https://doi.org/10.3390/universe10080316
APA StyleArcodia, R., Bauer, F. E., Cenko, S. B., Dage, K. C., Haggard, D., Ho, W. C. G., Kara, E., Koss, M., Liu, T., Mallick, L., Negro, M., Pradhan, P., Quirola-Vásquez, J., Reynolds, M. T., Ricci, C., Rothschild, R. E., Sridhar, N., Troja, E., & Yao, Y. (2024). Prospects for Time-Domain and Multi-Messenger Science with AXIS. Universe, 10(8), 316. https://doi.org/10.3390/universe10080316