A Comprehensive Study on the Mid-Infrared Variability of Blazars
Abstract
:1. Introduction
2. Sample and Data
3. Methods and Results
3.1. Short-Term Variability Amplitude
3.2. Duty Cycle
3.3. Long-Term Variability Amplitude
4. Summary and Discussion
- FSRQs exhibited larger and DC values compared to BL Lacs.
- LSPs displayed larger and DC values relative to ISPs and HSPs.
- Fermi blazars demonstrated higher long-term but lower short-term relative to non-Fermi blazars, with similar DC distributions between the two groups.
- ESF analysis further confirmed the greater variability of FSRQs, LSPs, and Fermi blazars across a wide range of time scales compared to BL Lacs, ISPs/HSPs, and non-Fermi blazars.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://wise2.ipac.caltech.edu/docs/release/allwise, accessed on 10 December 2023. |
2 | https://wise2.ipac.caltech.edu/docs/release/neowise, accessed on 10 December 2023. |
3 | https://irsa.ipac.caltech.edu/, accessed on 21 December 2023. |
4 | https://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec2_4ci.html, accessed on 21 December 2023. |
5 | https://openuniverse.asi.it/OU4Blazars/MasterListV2/, accessed on 8 July 2023. |
6 | The p-values from the function are floored/capped at 0.001/0.25. |
7 | https://pypi.org/project/scikit-posthocs/, accessed on 23 August 2024. |
References
- Rees, M.J. Black Hole Models for Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1984, 22, 471–506. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Ackermann, M.; Anantua, R.; Asano, K.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; et al. Minute-timescale >100 MeV γ-Ray Variability during the Giant Outburst of Quasar 3C 279 Observed by Fermi-LAT in 2015 June. Astrophys. J. Lett. 2016, 824, L20. [Google Scholar] [CrossRef]
- Fan, J.H.; Kurtanidze, S.O.; Liu, Y.; Kurtanidze, O.M.; Nikolashvili, M.G.; Liu, X.; Zhang, L.X.; Cai, J.T.; Zhu, J.T.; He, S.L.; et al. Optical Photometry of the Quasar 3C 454.3 during the Period 2006–2018 and the Long-term Periodicity Analysis. Astrophys. J. Suppl. Ser. 2021, 253, 10. [Google Scholar] [CrossRef]
- Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G.V.; Liodakis, I.; et al. RoboPol: The optical polarization of gamma-ray-loud and gamma-ray-quiet blazars. Mon. Not. R. Astron. Soc. 2016, 463, 3365–3380. [Google Scholar] [CrossRef]
- Aller, M.F.; Aller, H.D.; Hughes, P.A. Pearson-Readhead Survey Sources: Properties of the Centimeter-Wavelength Flux and Polarization of a Complete Radio Sample. Astrophys. J. 1992, 399, 16. [Google Scholar] [CrossRef]
- Liodakis, I.; Marscher, A.P.; Agudo, I.; Berdyugin, A.V.; Bernardos, M.I.; Bonnoli, G.; Borman, G.A.; Casadio, C.; Casanova, V.; Cavazzuti, E.; et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 2022, 611, 677–681. [Google Scholar] [CrossRef]
- Massaro, F.; Thompson, D.J.; Ferrara, E.C. The extragalactic gamma-ray sky in the Fermi era. Astron. Astrophys. Rev. 2015, 24, 2. [Google Scholar] [CrossRef]
- Pei, Z.Y.; Fan, J.H.; Bastieri, D.; Yang, J.H.; Xiao, H.B.; Yang, W.X. The relationship between the radio core-dominance parameter and spectral index in different classes of extragalactic radio sources (III). Res. Astron. Astrophys. 2020, 20, 025. [Google Scholar] [CrossRef]
- Stocke, J.T.; Morris, S.L.; Gioia, I.M.; Maccacaro, T.; Schild, R.; Wolter, A.; Fleming, T.A.; Henry, J.P. The Einstein Observatory Extended Medium-Sensitivity Survey. II. The Optical Identifications. Astrophys. J. Suppl. 1991, 76, 813. [Google Scholar] [CrossRef]
- Scarpa, R.; Falomo, R. Are high polarization quasars and BL Lacertae objects really different? A study of the optical spectral properties. Astron. Astrophys. 1997, 325, 109–123. [Google Scholar]
- Donato, D.; Ghisellini, G.; Tagliaferri, G.; Fossati, G. Hard X-ray properties of blazars. Astron. Astrophys. 2001, 375, 739–751. [Google Scholar] [CrossRef]
- Mao, L.S.; Xie, G.Z.; Bai, J.M.; Liu, H.T. Statistical Properties of a Blazar Sample and Comparison of HBLs, LBLs and FSRQs. Chin. J. Astron. Astrophys. 2005, 5, 471–486. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G. The transition between BL Lac objects and flat spectrum radio quasars. Mon. Not. R. Astron. Soc. 2011, 414, 2674–2689. [Google Scholar] [CrossRef]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Mao, P.; Urry, C.M.; Massaro, F.; Paggi, A.; Cauteruccio, J.; Künzel, S.R. A Comprehensive Statistical Description of Radio-through-Gamma-Ray Spectral Energy Distributions of All Known Blazars. Astrophys. J. Suppl. Ser. 2016, 224, 26. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30–70. [Google Scholar] [CrossRef]
- Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; Brill, A.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope: Data Release 3. Astrophys. J. Suppl. Ser. 2022, 263, 24. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, D.; Gu, M.; Chen, L. Why are some BL Lacertaes detected by Fermi, but others not? Astron. Astrophys. 2014, 562, A64. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hovatta, T.; Max-Moerbeck, W.; Readhead, A.C.S.; Richards, J.L.; Ros, E. Why Have Many of the Brightest Radio-loud Blazars Not Been Detected in Gamma-Rays by Fermi? Astrophys. J. Lett. 2015, 810, L9. [Google Scholar] [CrossRef]
- Deng, X.J.; Xue, R.; Wang, Z.R.; Xi, S.Q.; Xiao, H.B.; Du, L.M.; Xie, Z.H. The physical properties of γ-ray-quiet flat-spectrum radio quasars: Why are they undetected by Fermi-LAT? Mon. Not. R. Astron. Soc. 2021, 506, 5764–5773. [Google Scholar] [CrossRef]
- Xiong, D.; Zhang, X.; Bai, J.; Zhang, H. Basic properties of Fermi blazars and the ‘blazar sequence’. Mon. Not. R. Astron. Soc. 2015, 450, 3568–3578. [Google Scholar] [CrossRef]
- Savolainen, T.; Homan, D.C.; Hovatta, T.; Kadler, M.; Kovalev, Y.Y.; Lister, M.L.; Ros, E.; Zensus, J.A. Relativistic beaming and gamma-ray brightness of blazars. Astron. Astrophys. 2010, 512, A24. [Google Scholar] [CrossRef]
- Pushkarev, A.B.; Kovalev, Y.Y.; Lister, M.L.; Savolainen, T. Jet opening angles and gamma-ray brightness of AGN. Astron. Astrophys. 2009, 507, L33–L36. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Kadler, M.; Kellermann, K.I.; Kovalev, Y.Y.; Ros, E.; Savolainen, T.; Zensus, J.A. A Connection Between Apparent VLBA Jet Speeds and Initial Active Galactic Nucleus Detections Made by the Fermi Gamma-Ray Observatory. Astrophys. J. Lett. 2009, 696, L22–L26. [Google Scholar] [CrossRef]
- Piner, B.G.; Pushkarev, A.B.; Kovalev, Y.Y.; Marvin, C.J.; Arenson, J.G.; Charlot, P.; Fey, A.L.; Collioud, A.; Voitsik, P.A. Relativistic Jets in the Radio Reference Frame Image Database. II. Blazar Jet Accelerations from the First 10 Years of Data (1994–2003). Astrophys. J. 2012, 758, 84. [Google Scholar] [CrossRef]
- Pushkarev, A.B.; Kovalev, Y.Y. Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz. Astron. Astrophys. 2012, 544, A34. [Google Scholar] [CrossRef]
- Hovatta, T.; Pavlidou, V.; King, O.G.; Mahabal, A.; Sesar, B.; Dancikova, R.; Djorgovski, S.G.; Drake, A.; Laher, R.; Levitan, D.; et al. Connection between optical and γ-ray variability in blazars. Mon. Not. R. Astron. Soc. 2014, 439, 690–702. [Google Scholar] [CrossRef]
- Fuhrmann, L.; Angelakis, E.; Zensus, J.A.; Nestoras, I.; Marchili, N.; Pavlidou, V.; Karamanavis, V.; Ungerechts, H.; Krichbaum, T.P.; Larsson, S.; et al. The F-GAMMA programme: Multi-frequency study of active galactic nuclei in the Fermi era. Programme description and the first 2.5 years of monitoring. Astron. Astrophys. 2016, 596, A45. [Google Scholar] [CrossRef]
- Bhatta, G.; Webb, J. Microvariability in BL Lacertae: “Zooming” into the Innermost Blazar Regions. Galaxies 2018, 6, 2. [Google Scholar] [CrossRef]
- Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Annu. Rev. Astron. Astrophys. 1995, 33, 163–198. [Google Scholar] [CrossRef]
- Gupta, A.C.; Fan, J.H.; Bai, J.M.; Wagner, S.J. Optical Intra-Day Variability in Blazars. Astron. J. 2008, 135, 1384–1394. [Google Scholar] [CrossRef]
- Sandrinelli, A.; Covino, S.; Treves, A. Long and short term variability of seven blazars in six near-infrared/optical bands. Astron. Astrophys. 2014, 562, A79. [Google Scholar] [CrossRef]
- Fan, J.H.; Xie, G.Z.; Pecontal, E.; Pecontal, A.; Copin, Y. Historic Light Curve and Long-Term Optical Variation of BL Lacertae 2200 + 420. Astrophys. J. 1998, 507, 173–178. [Google Scholar] [CrossRef]
- Villforth, C.; Nilsson, K.; Heidt, J.; Takalo, L.O.; Pursimo, T.; Berdyugin, A.; Lindfors, E.; Pasanen, M.; Winiarski, M.; Drozdz, M.; et al. Variability and stability in blazar jets on time-scales of years: Optical polarization monitoring of OJ 287 in 2005–2009. Mon. Not. R. Astron. Soc. 2010, 402, 2087–2111. [Google Scholar] [CrossRef]
- Bonning, E.; Urry, C.M.; Bailyn, C.; Buxton, M.; Chatterjee, R.; Coppi, P.; Fossati, G.; Isler, J.; Maraschi, L. SMARTS Optical and Infrared Monitoring of 12 Gamma-Ray Bright Blazars. Astrophys. J. 2012, 756, 13. [Google Scholar] [CrossRef]
- Safna, P.Z.; Stalin, C.S.; Rakshit, S.; Mathew, B. Long-term optical and infrared variability characteristics of Fermi blazars. Mon. Not. R. Astron. Soc. 2020, 498, 3578–3591. [Google Scholar] [CrossRef]
- Gupta, A.C.; Kushwaha, P.; Carrasco, L.; Xu, H.; Wiita, P.J.; Escobedo, G.; Porras, A.; Recillas, E.; Mayya, Y.D.; Chavushyan, V.; et al. Long-term Multiband Near-infrared Variability of the Blazar OJ 287 during 2007–2021. Astrophys. J. Suppl. Ser. 2022, 260, 39. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R.M.; Dailey, J.; Eisenhardt, P.; McMillan, R.S.; Wright, E.; Walker, R.; et al. Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science. Astrophys. J. 2011, 731, 53. [Google Scholar] [CrossRef]
- Mainzer, A.; Bauer, J.; Cutri, R.M.; Grav, T.; Masiero, J.; Beck, R.; Clarkson, P.; Conrow, T.; Dailey, J.; Eisenhardt, P.; et al. Initial Performance of the NEOWISE Reactivation Mission. Astrophys. J. 2014, 792, 30. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, X.; Yi, T. Mid-infrared variability of blazars: A view from NEOWISE survey. Astrophys. Space Sci. 2018, 363, 167. [Google Scholar] [CrossRef]
- Anjum, A.; Stalin, C.S.; Rakshit, S.; Gudennavar, S.B.; Durgapal, A. Mid-infrared variability of γ-ray emitting blazars. Mon. Not. R. Astron. Soc. 2020, 494, 764–774. [Google Scholar] [CrossRef]
- Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. Roma-BZCAT: A multifrequency catalogue of blazars. Astron. Astrophys. 2009, 495, 691–696. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Ajello, M.; Angioni, R.; Axelsson, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 892, 105. [Google Scholar] [CrossRef]
- Rakshit, S.; Johnson, A.; Stalin, C.S.; Gandhi, P.; Hoenig, S. WISE view of narrow-line Seyfert 1 galaxies: Mid-infrared colour and variability. Mon. Not. R. Astron. Soc. 2019, 483, 2362–2370. [Google Scholar] [CrossRef]
- Kudryavtsev, D.O.; Sotnikova, Y.V.; Stolyarov, V.A.; Mufakharov, T.V.; Vlasyuk, V.V.; Khabibullina, M.L.; Mikhailov, A.G.; Cherepkova, Y.V. Cluster Analysis of the Roma-BZCAT Blazars. Res. Astron. Astrophys. 2024, 24, 055011. [Google Scholar] [CrossRef]
- Giommi, P.; Brandt, C.H.; Barres de Almeida, U.; Pollock, A.M.T.; Arneodo, F.; Chang, Y.L.; Civitarese, O.; De Angelis, M.; D’Elia, V.; Del Rio Vera, J.; et al. Open Universe for Blazars: A new generation of astronomical products based on 14 years of Swift-XRT data. Astron. Astrophys. 2019, 631, A116. [Google Scholar] [CrossRef]
- Sesar, B.; Ivezić, Ž.; Lupton, R.H.; Jurić, M.; Gunn, J.E.; Knapp, G.R.; DeLee, N.; Smith, J.A.; Miknaitis, G.; Lin, H.; et al. Exploring the Variable Sky with the Sloan Digital Sky Survey. Astron. J. 2007, 134, 2236–2251. [Google Scholar] [CrossRef]
- Ai, Y.L.; Yuan, W.; Zhou, H.Y.; Wang, T.G.; Dong, X.B.; Wang, J.G.; Lu, H.L. Dependence of the Optical/Ultraviolet Variability on the Emission-line Properties and Eddington Ratio in Active Galactic Nuclei. Astrophys. J. Lett. 2010, 716, L31–L35. [Google Scholar] [CrossRef]
- Jarrett, T.H.; Cohen, M.; Masci, F.; Wright, E.; Stern, D.; Benford, D.; Blain, A.; Carey, S.; Cutri, R.M.; Eisenhardt, P.; et al. The Spitzer-WISE Survey of the Ecliptic Poles. Astrophys. J. 2011, 735, 112. [Google Scholar] [CrossRef]
- Kundu, A.; Chatterjee, R.; Mitra, K.; Mondal, S. rms-flux relation and disc-jet connection in blazars in the context of the internal shocks model. Mon. Not. R. Astron. Soc. 2022, 510, 3688–3700. [Google Scholar] [CrossRef]
- Giebels, B.; Degrange, B. Lognormal variability in BL Lacertae. Astron. Astrophys. 2009, 503, 797–799. [Google Scholar] [CrossRef]
- Kushwaha, P.; Sinha, A.; Misra, R.; Singh, K.P.; de Gouveia Dal Pino, E.M. Gamma-Ray Flux Distribution and Nonlinear Behavior of Four LAT Bright AGNs. Astrophys. J. 2017, 849, 138. [Google Scholar] [CrossRef]
- Bhatta, G. Characterizing Long-term Optical Variability Properties of γ-Ray-bright Blazars. Astrophys. J. 2021, 923, 7. [Google Scholar] [CrossRef]
- Scholz, F.W.; Stephens, M.A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 1987, 82, 918–924. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Romero, G.E.; Cellone, S.A.; Combi, J.A. Optical microvariability of southern AGNs. Astron. Astrophys. Suppl. 1999, 135, 477–486. [Google Scholar] [CrossRef]
- Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill Education: New York, NY, USA, 1969. [Google Scholar]
- Emmanoulopoulos, D.; McHardy, I.M.; Uttley, P. On the use of structure functions to study blazar variability: Caveats and problems. Mon. Not. R. Astron. Soc. 2010, 404, 931–946. [Google Scholar] [CrossRef]
- Vanden Berk, D.E.; Wilhite, B.C.; Kron, R.G.; Anderson, S.F.; Brunner, R.J.; Hall, P.B.; Ivezić, Ž.; Richards, G.T.; Schneider, D.P.; York, D.G.; et al. The Ensemble Photometric Variability of ∼25,000 Quasars in the Sloan Digital Sky Survey. Astrophys. J. 2004, 601, 692–714. [Google Scholar] [CrossRef]
- Gallastegui-Aizpun, U.; Sarajedini, V.L. The ensemble optical variability of type-1 AGN in the Sloan Digital Sky Survey Data Release 7. Mon. Not. R. Astron. Soc. 2014, 444, 3078–3088. [Google Scholar] [CrossRef]
- Kozłowski, S. Revisiting Stochastic Variability of AGNs with Structure Functions. Astrophys. J. 2016, 826, 118. [Google Scholar] [CrossRef]
- Kelly, B.C.; Bechtold, J.; Siemiginowska, A. Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations? Astrophys. J. 2009, 698, 895–910. [Google Scholar] [CrossRef]
- Paliya, V.S.; Stalin, C.S.; Ajello, M.; Kaur, A. Intra-night Optical Variability Monitoring of Fermi Blazars: First Results from 1.3 m J. C. Bhattacharya Telescope. Astrophys. J. 2017, 844, 32. [Google Scholar] [CrossRef]
- Bauer, A.; Baltay, C.; Coppi, P.; Ellman, N.; Jerke, J.; Rabinowitz, D.; Scalzo, R. Blazar Optical Variability in the Palomar-Quest Survey. Astrophys. J. 2009, 699, 1732–1741. [Google Scholar] [CrossRef]
- Gardner, E.; Done, C. What powers the most relativistic jets?-I. BL Lacs. Mon. Not. R. Astron. Soc. 2014, 438, 779–788. [Google Scholar] [CrossRef]
- Gardner, E.; Done, C. What powers the most relativistic jets?-II. Flat-spectrum radio quasars. Mon. Not. R. Astron. Soc. 2018, 473, 2639–2654. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE. X. Parsec-scale Jet Orientation Variations and Superluminal Motion in Active Galactic Nuclei. Astron. J. 2013, 146, 120. [Google Scholar] [CrossRef]
- Liodakis, I.; Pavlidou, V. Population statistics of beamed sources-I. A new model for blazars. Mon. Not. R. Astron. Soc. 2015, 451, 2434–2446. [Google Scholar] [CrossRef]
Type | Number | Number-z * | z Range | Median z |
---|---|---|---|---|
FSRQ | 1740 | 1740 | 0.07∼6.802 | 1.2735 |
BL Lac | 1281 | 622 | 0.000927∼3.528223 | 0.3225 |
BCU | 795 | 205 | 0.000927∼4.413 | 0.66 |
Fermi blazar | 2331 | 1215 | 0.000927∼4.313 | 0.746 |
non-Fermi blazar | 1485 | 1352 | 0.07∼6.802 | 1.114 |
LSP | 2264 | 1823 | 0.000927∼5.47 | 1.196 |
ISP | 512 | 271 | 0.000927∼6.802 | 0.56 |
HSP | 655 | 399 | 0.047∼3.475 | 0.335 |
No. | Name | RA (deg) | Dec (deg) | z | Type1 | Type2 | Type3 | (long) (mag) | (short) (mag) | Duty Cycle (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 5BZQJ0000−3221 | 0.0850 | −32.3503 | 1.275 | FSRQ | N | LSP | 0.030 | 0.242 | 78.56 |
2 | 5BZQJ0001−1551 | 0.2721 | −15.8519 | 2.044 | FSRQ | N | LSP | 0.024 | 0.267 | 100.00 |
3 | 5BZBJ0001−0746 | 0.3250 | −7.7741 | BL Lac | Y | ISP | 0.593 | 0.036 | ||
4 | 5BZBJ0001−0011 | 0.3395 | −0.1944 | 0.462 | BL Lac | Y | LSP | 0.137 | 0.148 | 83.40 |
5 | 5BZBJ0002−0024 | 0.7382 | −0.4131 | 0.523 | BL Lac | N | LSP | 0.143 | 0.103 | 70.65 |
6 | 5BZQJ0003+2129 | 0.8306 | 21.4957 | 0.45 | FSRQ | N | LSP | 0.091 | 0.043 | 27.98 |
7 | 5BZBJ0004−1148 | 1.0203 | −11.8161 | BL Lac | Y | LSP | 0.265 | 0.071 | ||
8 | 5BZQJ0004+4615 | 1.0674 | 46.2551 | 1.81 | FSRQ | Y | LSP | 0.780 | 0.397 | 92.55 |
9 | 5BZQJ0004−4736 | 1.1485 | −47.6054 | 0.884 | FSRQ | Y | LSP | 0.390 | 0.219 | 81.17 |
10 | 5BZQJ0004+2019 | 1.1490 | 20.3285 | 0.677 | FSRQ | N | LSP | 0.657 | 0.280 | 79.04 |
11 | 5BZQJ0005−1648 | 1.3247 | −16.8013 | 0.78 | FSRQ | N | LSP | 0.127 | 0.081 | 49.03 |
12 | 5BZQJ0005+0524 | 1.3342 | 5.4030 | 1.9 | FSRQ | N | ISP | 0.000 | 0.142 | 43.30 |
13 | 5BZQJ0005+3820 | 1.4883 | 38.3376 | 0.229 | FSRQ | Y | LSP | 0.134 | 0.037 | 29.48 |
14 | 5BZBJ0006−0623 | 1.5579 | −6.3931 | 0.347 | BL Lac | Y | LSP | 0.894 | 0.058 | 31.05 |
15 | 5BZQJ0006−4245 | 1.5822 | −42.7552 | 1.77 | FSRQ | N | LSP | 0.000 | 0.312 | 92.19 |
16 | 5BZQJ0006+2422 | 1.7033 | 24.3768 | 1.684 | FSRQ | N | ISP | 0.106 | 0.542 | 93.39 |
17 | 5BZQJ0007−6113 | 1.8358 | −61.2184 | 0.857 | FSRQ | N | LSP | 0.179 | 0.418 | 90.71 |
18 | 5BZBJ0007+4712 | 1.9999 | 47.2021 | 0.28 | BL Lac | Y | HSP | 0.240 | 0.085 | 42.62 |
19 | 5BZQJ0008−2339 | 2.0015 | −23.6550 | 1.412 | FSRQ | N | LSP | 0.000 | 0.097 | 54.51 |
20 | 5BZBJ0008−2339 | 2.1474 | −23.6577 | 0.147 | BL | Y | HSP | 0.055 | 0.083 | 53.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hu, Z.; Huang, W.; Mao, L. A Comprehensive Study on the Mid-Infrared Variability of Blazars. Universe 2024, 10, 360. https://doi.org/10.3390/universe10090360
Zhang X, Hu Z, Huang W, Mao L. A Comprehensive Study on the Mid-Infrared Variability of Blazars. Universe. 2024; 10(9):360. https://doi.org/10.3390/universe10090360
Chicago/Turabian StyleZhang, Xuemei, Zhipeng Hu, Weitian Huang, and Lisheng Mao. 2024. "A Comprehensive Study on the Mid-Infrared Variability of Blazars" Universe 10, no. 9: 360. https://doi.org/10.3390/universe10090360
APA StyleZhang, X., Hu, Z., Huang, W., & Mao, L. (2024). A Comprehensive Study on the Mid-Infrared Variability of Blazars. Universe, 10(9), 360. https://doi.org/10.3390/universe10090360