Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument
Abstract
:1. Introduction
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marolf, D. The Black Hole information problem: Past, present, and future. Rept. Prog. Phys. 2017, 80, 092001. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, C.; Vidotto, F. Planck Stars. Int. J. Mod. Phys. D 2014, 23, 1442026. [Google Scholar] [CrossRef]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- York, J.W. Dynamical origin of black-hole radiance. Phys. Rev. D 1983, 28, 2929–2945. [Google Scholar] [CrossRef]
- Zurek, W.H.; Thorne, K.S. Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole. Phys. Rev. Lett. 1985, 54, 2171. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.A. A Journey into Gravity and Spacetime; Freeman: New York, NY, USA, 1990. [Google Scholar]
- ’t Hooft, G. The black hole interpretation of string theory. Nucl. Phys. B 1990, 335, 138. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L.; Uglum, R. The Stretched Horizon and Black Hole Complementarity. Phys. Rev. D 1993, 48, 3743. [Google Scholar] [CrossRef]
- Frolov, V.; Novikov, I. Dynamical Origin of the Entropy of a Black Hole. Phys. Rev. D 1993, 48, 4545. [Google Scholar] [CrossRef] [PubMed]
- Carlip, S. The Statistical Mechanics of the (2 + 1)-Dimensional Black Hole. Phys. Rev. D 1995, 51, 632. [Google Scholar] [CrossRef] [PubMed]
- Cvetic, M.; Tseytlin, A. Solitonic strings and BPS saturated dyonic black holes. Phys. Rev. D 1996, 53, 5619. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.; Wilczek, F. Internal structure of black holes. Phys. Lett. B 1996, 375, 37. [Google Scholar] [CrossRef]
- Rovelli, C. Loop Quantum Gravity and Black Hole Physics. Helv. Phys. Acta 1996, 69, 582–611. [Google Scholar]
- Strominger, A. Black hole entropy from near-horizon microstates. J. High Energy Phys. 1998, 1998, 009. [Google Scholar] [CrossRef]
- Jacobson, T.; Marolf, D.; Rovelli, C. Black hole entropy: Inside or out? Int. J. Theor. Phys. 2005, 44, 1807. [Google Scholar] [CrossRef]
- Thorne, K.S.; Price, R.H.; Macdonald, D.A. (Eds.) Black Holes: The Membrane Paradigm; Yale University Press: New Haven, CT, USA, 1986. [Google Scholar]
- Rovelli, C. Black Hole Entropy from Loop Quantum Gravity. Phys. Rev. Lett. 1996, 14, 3288. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Horowitz, G.; Strominger, A. Counting states of near-extremal black holes. Phys. Rev. Lett. 1996, 77, 2368–2371. [Google Scholar] [CrossRef] [PubMed]
- ’t Hooft, S.B.; Giddings, C.; Rovelli, P.; Nicolini, J.; Mureika, M.; Kaminski, M. The Good, the Bad, and the Ugly of Gravity and Information. In Proceedings of the 2nd Karl Schwarzschild Meeting on Gravitational Physics, Frankfurt am Main, Germany, 20–24 July 2015. [Google Scholar]
- Page, D.M. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.; Rovelli, C. How big is a black hole? Phys. Rev. D 2015, 91, 064046. [Google Scholar] [CrossRef]
- De Lorenzo, T.; Christodoulou, M. Volume inside old black holes. Phys. Rev. D 2016, 94, 104002. [Google Scholar]
- Bengtsson, I.; Jakobsson, E. Black holes: Their large interiors. Mod. Phys. Lett. A 2015, 30, 1550103. [Google Scholar] [CrossRef]
- Ong, Y.C. Never Judge a Black Hole by Its Area. J. Cosmol. Astropart. Phys. 2015, 1504, 003. [Google Scholar] [CrossRef]
- Ong, Y.C. The Persistence of the Large Volumes in Black Holes. Gen. Rel. Grav. 2015, 47, 88. [Google Scholar] [CrossRef]
- Wang, S.-J.; Guo, X.-X.; Wang, T. Maximal volume behind horizons without curvature singularity. arXiv 2018, arXiv:1702.05246. [Google Scholar] [CrossRef]
- Shad, A.; Tong, L. The CR volume for black holes and the corresponding entropy variation: A review. New Astron. Rev. 2024, 99, 101709. [Google Scholar]
- Christodoulou, M.; Rovelli, C.; Speziale, S.; Vilensky, I. Realistic Observable in Background-Free Quantum Gravity: The Planck-Star Tunnelling-Time. Phys. Rev. D 2016, 94, 084035. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Black hole evaporation: A paradigm. Class. Quantum Gravity 2005, 22, 3349–3362. [Google Scholar] [CrossRef]
- Bianchi, E.; De Lorenzo, T.; Smerlak, M. Entanglement entropy production in gravitational collapse: Covariant regularization and solvable models. J. High Energy Phys. 2015, 2015, 180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovelli, C. Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument. Universe 2025, 11, 6. https://doi.org/10.3390/universe11010006
Rovelli C. Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument. Universe. 2025; 11(1):6. https://doi.org/10.3390/universe11010006
Chicago/Turabian StyleRovelli, Carlo. 2025. "Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument" Universe 11, no. 1: 6. https://doi.org/10.3390/universe11010006
APA StyleRovelli, C. (2025). Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument. Universe, 11(1), 6. https://doi.org/10.3390/universe11010006