Higher Spin Matrix Models
Abstract
:1. Introduction
2. Matrix Models and Higher Spin Gravity
From Matrix Models to Higher Spin Gravity
3. Deformation Quantization of Type IIB Strings
4. Type IIB Higher Spin Matrix Models in
4.1. Some Solutions
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gross, D.J. High-Energy Symmetries of String Theory. Phys. Rev. Lett. 1988, 60, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Engquist, J.; Sundell, P.; Tamassia, L. On Singleton Composites in Non-compact WZW Models. J. High Energy Phys. 2007, 2007, 97. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Progress in higher spin gauge theories. In Proceedings of the Quantization, Gauge Theory, and Strings, International Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow, Russia, 5–10 June 2000; Volume 1 + 2, pp. 452–471. [Google Scholar]
- Sundborg, B. Stringy gravity, interacting tensionless strings and massless higher spins. Nucl. Phys. Proc. Suppl. 2001, 102, 113–119. [Google Scholar] [CrossRef]
- Sezgin, E.; Sundell, P. Massless higher spins and holography. Nucl. Phys. B 2002, 644, 303–370, Erratum in 2003, 660, 403. [Google Scholar] [CrossRef]
- Bonelli, G. On the tensionless limit of bosonic strings, infinite symmetries and higher spins. Nucl. Phys. B 2003, 669, 159–172. [Google Scholar] [CrossRef]
- Engquist, J.; Sundell, P. Brane partons and singleton strings. Nucl. Phys. B 2006, 752, 206–279. [Google Scholar] [CrossRef]
- Fotopoulos, A.; Tsulaia, M. On the Tensionless Limit of String theory, Off-Shell Higher Spin Interaction Vertices and BCFW Recursion Relations. J. High Energy Phys. 2010, 2010, 86. [Google Scholar] [CrossRef]
- Sagnotti, A. Notes on Strings and Higher Spins. J. Phys. A Math. Theor. 2013, 46, 214006. [Google Scholar] [CrossRef]
- Banks, T.; Fischler, W.; Shenker, S.H.; Susskind, L. M theory as a matrix model: A Conjecture. Phys. Rev. D 1997, 55, 5112–5128. [Google Scholar] [CrossRef]
- Susskind, L. Another conjecture about M(atrix) theory. arXiv, 1997; arXiv:hep-th/9704080. [Google Scholar]
- Ishibashi, N.; Kawai, H.; Kitazawa, Y.; Tsuchiya, A. A Large N reduced model as superstring. Nucl. Phys. B 1997, 498, 467–491. [Google Scholar] [CrossRef]
- Fayyazuddin, A.; Makeenko, Y.; Olesen, P.; Smith, D.J.; Zarembo, K. Towards a nonperturbative formulation of IIB superstrings by matrix models. Nucl. Phys. B 1997, 499, 159–182. [Google Scholar] [CrossRef]
- Schild, A. Classical Null Strings. Phys. Rev. D 1977, 16, 1722–1726. [Google Scholar] [CrossRef]
- Makeenko, Y. Three introductory lectures in Helsinki on matrix models of superstrings. In Proceedings of the 5th Nordic Meeting on Supersymmetric Field and String Theories, Helsinki, Finland, 10–12 March 1997. [Google Scholar]
- Boulanger, N.; Sundell, P.; Valenzuela, M. Three-dimensional fractional-spin gravity. J. High Energy Phys. 2014, 2014, 52. [Google Scholar] [CrossRef]
- Boulanger, N.; Sundell, P.; Valenzuela, M. Gravitational and gauge couplings in Chern-Simons fractional spin gravity. J. High Energy Phys. 2016, 2016, 75. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions. Phys. Lett. B 1990, 243, 378–382. [Google Scholar] [CrossRef]
- Vasiliev, M.A. More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions. Phys. Lett. B 1992, 285, 225–234. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher spin gauge theories: Star product and AdS space. In The Many Faces of the Superworld; Shifman, M.A., Ed.; World Scientific: Singapore, 1999; pp. 533–610. [Google Scholar]
- Vasiliev, M.A. Higher spin gauge theories in any dimension. Comptes Rendus Phys. 2004, 5, 1101–1109. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher-Spin Theory and Space-Time Metamorphoses. Lect. Notes Phys. 2015, 892, 227–264. [Google Scholar]
- Alkalaev, K.B.; Grigoriev, M.; Skvortsov, E.D. Uniformizing higher-spin equations. J. Phys. A 2015, 48, 015401. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation Theory and Quantization. 1. Deformations of Symplectic Structures. Ann. Phys. 1978, 111, 61–110. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation Theory and Quantization. 2. Physical Applications. Ann. Phys. 1978, 111, 111–151. [Google Scholar] [CrossRef]
- Prokushkin, S.F.; Segal, A.Y.; Vasiliev, M.A. Coordinate free action for AdS(3) higher spin matter systems. Phys. Lett. B 2000, 478, 333–342. [Google Scholar] [CrossRef]
- Prokushkin, S.; Vasiliev, M.A. 3-d higher spin gauge theories with matter. In Proceedings of the Theory of Elementary Particles, 31st International Symposium Ahrenshoop, Buckow, Germany, 2–6 September 1997. [Google Scholar]
- Prokushkin, S.F.; Vasiliev, M.A. Higher spin gauge interactions for massive matter fields in 3-D AdS space-time. Nucl. Phys. B 1999, 545, 385–433. [Google Scholar] [CrossRef]
- Wigner, E.P. Do the Equations of Motion Determine the Quantum Mechanical Commutation Relations? Phys. Rev. 1950, 77, 711–712. [Google Scholar] [CrossRef]
- Yang, L.M. A Note on the Quantum Rule of the Harmonic Oscillator. Phys. Rev. 1951, 84, 788–790. [Google Scholar] [CrossRef]
- Sperling, M.; Steinacker, H.C. Covariant 4-dimensional fuzzy spheres, matrix models and higher spin. J. Phys. A 2017, 50, 375202. [Google Scholar] [CrossRef]
- Sperling, M.; Steinacker, H.C. Higher spin gauge theory on fuzzy . arXiv, 2017; arXiv:1707.00885. [Google Scholar]
- Valenzuela, M. From phase space to multivector matrix models. arXiv, 2015; arXiv:1501.03644. [Google Scholar]
- Van Holten, J.W.; Van Proeyen, A. N=1 Supersymmetry Algebras in D=2, D=3, D=4 MOD-8. J. Phys. A 1982, 15, 3763–3784. [Google Scholar] [CrossRef]
- Polyakov, A.M. Fine Structure of Strings. Nucl. Phys. B 1986, 268, 406–412. [Google Scholar] [CrossRef]
- Riccioni, F.; West, P.C. E(11)-extended spacetime and gauged supergravities. J. High Energy Phys. 2008, 2008, 39. [Google Scholar] [CrossRef]
- West, P. E11, generalised space-time and equations of motion in four dimensions. J. High Energy Phys. 2012, 2012, 68. [Google Scholar] [CrossRef]
- West, P. A brief review of E theory. Int. J. Mod. Phys. A 2016, 31, 1630043. [Google Scholar] [CrossRef]
- Plyushchay, M.; Sorokin, D.; Tsulaia, M. GL flatness of OSp(1|2n) and higher spin field theory from dynamics in tensorial spaces. In Proceedings of the 5th International Workshop on Supersymmetries and Quantum Symmetries (SQS’03), Dubna, Russia, 24–29 July 2003; pp. 96–108. [Google Scholar]
- Bandos, I.; Pasti, P.; Sorokin, D.; Tonin, M. Superfield theories in tensorial superspaces and the dynamics of higher spin fields. J. High Energy Phys. 2004, 2004, 23. [Google Scholar] [CrossRef]
- Bandos, I.; Bekaert, X.; de Azcarraga, J.A.; Sorokin, D.; Tsulaia, M. Dynamics of higher spin fields and tensorial space. J. High Energy Phys. 2005, 2005, 31. [Google Scholar] [CrossRef]
IKKT Matrix Model | String Theory | |
---|---|---|
gauge field: | target space coordinate: | |
commutator: | − Classical limit → | Worldsheet Poisson bracket: |
(super)trace: | Integral operator: | |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, M. Higher Spin Matrix Models. Universe 2017, 3, 74. https://doi.org/10.3390/universe3040074
Valenzuela M. Higher Spin Matrix Models. Universe. 2017; 3(4):74. https://doi.org/10.3390/universe3040074
Chicago/Turabian StyleValenzuela, Mauricio. 2017. "Higher Spin Matrix Models" Universe 3, no. 4: 74. https://doi.org/10.3390/universe3040074
APA StyleValenzuela, M. (2017). Higher Spin Matrix Models. Universe, 3(4), 74. https://doi.org/10.3390/universe3040074