Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices
Abstract
:1. Introduction
2. Noether’s Method
- The integer superspin supermultiplets are described by a pair of superfields and with the following zero order gauge transformations
- The half-integer superspin supermultiplets have two descriptions. One of them use the pair of superfields , with the following zero order gauge transformations
3. First Order Gauge Transformation for Chiral Superfield
4. Constructing the Higher Spin Supercurrents I: Varying the Action
- ,
- ,
5. The Combinatorics of the Imaginary Part
5.1. Odd Values of
5.2. Even Values of
6. Constructing the Higher Spin Supercurrents II: Gauge Invariance and Cubic Interactions
7. Minimal Multiplet of Noether Higher Spin Supercurrents
7.1. Coupling to Supergravity
7.2. Coupling to Higher Superspin Supermultiplets
- : The canonical supertrace is .The contribution of is , where .The contribution of is , where .We can cancel the supertrace competely if we select
- : The canonical supertrace is .The contribution of is , where .The contribution of is , where .The contribution of is , where .If we select
- General k: For the general case, using (68) we can show that up to terms that can be ignored due to chiral redefinition and the freedom in the definitions of the supertrace (18) and (49) we get:
8. On-Shell Conservation Equations
9. Component Discussion
10. Massive Chiral Superfield
10.1. Higher Spin Supercurrent and Supertrace
10.2. Minimal Multiplet of Higher Spin Supercurrents
10.3. Conservation Equation
11. Summary and Discussion
- (i)
- Proved that a single, massless, chiral superfield can have cubic interactions (52) only with the half-integer superspin irreducible representations of the super-Poincaré group. Moreover, despite the fact that there are two different formulations of the half-integer superspin supermultiplets, the chiral superfield has a clear preference to couple only to one of them, the one that can be lifted to higher spin supermultiplets.
- (ii)
- Generated the canonical multiplet of higher spin supercurrents (48) and (50) which satisfy conservation Equation (78) and leads to the cubic interactionsThe objects and are the higher spin supercurrent and higher spin supertrace respectively and are the higher spin analogues of the supercurrent and supertrace that appear in supergravity.
- (iii)
- Proved that for every k, there is a unique alternative multiplet of higher spin supercurrents, called minimal (73) and (88) with conservation Equation (80). The cubic interactions for the minimal multiplet have the simpler formFurthermore, we presented the construction of the appropriate improvement term that will take us from the canonical to the minimal multiplet. The supercurrent matches exactly the supercurrent generated by superconformal higher spins presented in [41].
- (iv)
- An expression for the integer spin current (95). There are two contributions to this current. The first is of the boson - boson type constructed out of a complex scalar which is defined as the the independent term of (). The second contribution is of the fermion—fermion type and is constructed out of a spinor defined as the term of (). Both of these contributions agree with known results.
- (v)
- An expression for the half-integer spin current (97). This current appears for the first time in the literature because it requires both the complex scalar and the spinor, therefore non-supersymmetric theories can not be used to construct it.
- (vi)
- An expression for an -symmetry current (98). This current also appears for the first time.
- (vii)
- A massive chiral can have cubic interactions only with the odd s half-integer superspin supermultiplets .
- (viii)
- The expressions for the higher spin supercurrent (110) and (121) and supertrace (112) and (122) of the canonical multiplet. These expressions have not been obtained before.
- (ix)
- There is no minimal multiplet of supercurrents for this case since the supertrace can not be adsorbed by improvement terms. However, it can be arranged to be proportional to the mass parameter, so at the massless limit we land at the minimal multiplet of the massless chiral superfield.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, L.P.S.; Hagen, C.R. Lagrangian formulation for arbitrary spin. I. The boson case. Phys. Rev. D 1974, 9, 898. [Google Scholar]
- Fronsdal, C. Massless fields with integer spin. Phys. Rev. D 1978, 18, 3624. [Google Scholar] [CrossRef]
- Fang, J.; Fronsdal, C. Massless fields with half-integral spin. Phys. Rev. D 1978, 18, 3630. [Google Scholar] [CrossRef]
- Fronsdal, C. Singletons and massless, integral-spin fields on de Sitter space. Phys. Rev. D 1979, 20, 848. [Google Scholar] [CrossRef]
- Curtright, T. Massless Field Supermultiplets With Arbitrary Spin. Phys. Lett. B 1979, 85, 219–224. [Google Scholar] [CrossRef]
- Curtright, T. High Spin Fields. AIP Conf. Proc. 1980, 68, 985. [Google Scholar]
- Fang, J.; Fronsdal, C. Massless, half-integer-spin fields in de Sitter space. Phys. Rev. D 1980, 22, 1361. [Google Scholar] [CrossRef]
- De Wit, B.; Freedman, D.Z. Systematics of higher spin gauge fields. Phys. Rev. D 1980, 21, 358. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Vasiliev, M.A. On the gravitational interaction of massless higher spin fields. Phys. Lett. B 1987, 189, 89–95. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions. Phys. Lett. B 1990, 243, 378–382. [Google Scholar] [CrossRef]
- Weinberg, S. Photons and Gravitons in S Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass. Phys. Rev. B 1964, 135, 1049. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields. Volume I: Foundations; Cambridge University Press: Cambridge, UK, 1995; Section 13.1. [Google Scholar]
- Grisaru, M.T.; Pendleton, H.N.; van Nieuwenhuizen, P. Supergravity and the S-Matrix. Phys. Rev. D 1977, 15, 996. [Google Scholar]
- Coleman, S.R.; Mandula, J. All possible symmetries of the S-matrix. Phys. Rev. 1967, 159, 1251–1256. [Google Scholar] [CrossRef]
- Haag, R.; Lopuszanski, J.T.; Sohnius, M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B 1975, 88, 257–274. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields. Volume III: Supersymmetry; Cambridge University Press: Cambridge, UK, 2000; Chapter 24. [Google Scholar]
- Aragone, C.; Deser, S. Consistency Problems of Hypergravity. Phys. Lett. B 1979, 86, 161–163. [Google Scholar] [CrossRef]
- Berends, F.A.; van Holten, J.W.; de Wit, B.; van Nieuwenhuizen, P. On Spin 5/2 Gauge Fields. J. Phys. A 1980, 13, 1643. [Google Scholar] [CrossRef]
- Aragone, C.; La Roche, H. Massless Second Order Tetradic Spin 3 Fields And Higher Helicity Bosons. Nuovo Cim. A 1982, 72, 149–163. [Google Scholar] [CrossRef]
- Deser, S.; Yang, Z. Inconsistency Of Spin 4-Spin-2 Gauge Field Couplings. Class. Quant. Grav. 1990, 7, 1491. [Google Scholar] [CrossRef]
- Porrati, M. Universal Limits on Massless High-Spin Particles. Phys. Rev. D 2008, 78, 65016. [Google Scholar] [CrossRef]
- Taronna, M. On the Non-Local Obstruction to Interacting Higher Spins in Flat Space. J. High Energy Phys. 2017, 2017, 26. [Google Scholar] [CrossRef]
- Roiban, R.; Tseytlin, A.A. On four-point interactions in massless higher spin theory in flat space. J. High Energy Phys. 2017, 2017, 139. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher spin gauge theories and bulk locality: A no-go result. arXiv, 2017; arXiv:1704.07859. [Google Scholar]
- Boulanger, N.; Leclercq, S. Consistent couplings between spin-2 and spin-3 massless fields. J. High Energy Phys. 2006, 2006, 34. [Google Scholar] [CrossRef]
- Boulanger, N.; Leclercq, S.; Sundell, P. On the uniqueness of minimal coupling in higher-spin gauge theory. J. High Energy Phys. 2008, 2008, 56. [Google Scholar] [CrossRef]
- Bekaert, X.; Boulanger, N.; Sundell, P. How higher-spin gravity surpasses the spin two barrier. Rev. Mod. Phys. 2012, 84, 987. [Google Scholar] [CrossRef]
- Porrati, M. Old and New No Go Theorems on Interacting Massless Particles in Flat Space. arXiv, 2012; arXiv:1209.4876. [Google Scholar]
- Vasiliev, M.A. Properties of equations of motion of interacting gauge fields of all spins in (3+1)-dimensions. Class. Quant. Grav. 1991, 8, 1387. [Google Scholar] [CrossRef]
- Vasiliev, M.A. More on Equations of Motion for Interacting Massless Fields of All Spins In (3+1)-Dimensions. Phys. Lett. B 1992, 285, 225–234. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Nonlinear equations for symmetric massless higher spin fields in (A)dS(d). Phys. Lett. B 2003, 567, 139–151. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher spin gauge theories in various dimensions. Fortsch. Phys. 2004, 52, 702–717. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher spin gauge theories in any dimension. Comptes Rendus Phys. 2004, 5, 1101–1109. [Google Scholar] [CrossRef]
- Bekaert, X.; Cnockaert, S.; Iazeolla, C.; Vasiliev, M.A. Nonlinear higher spin theories in various dimensions. In Proceedings of the First Solvay Workshop on Higher-Spin Gauge Theories, Brussels, Belgium, 12–14 May 2004. [Google Scholar]
- Gaberdiel, M.R.; Gopakumar, R. Minimal Model Holography. J. Phys. A 2013, 46, 214002. [Google Scholar] [CrossRef]
- Ammon, M.; Gutperle, M.; Kraus, P.; Perlmutter, E. Black holes in three dimensional higher spin gravity: A review. J. Phys. A 2013, 46, 214001. [Google Scholar] [CrossRef]
- Perez, A.; Tempo, D.; Troncoso, R. Higher Spin Black Holes. In Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 892, pp. 265–288. [Google Scholar]
- Taronna, M. Higher-spin interactions: four-point functions and beyond. J. High Energy Phys. 2012, 2012, 29. [Google Scholar] [CrossRef]
- Skvortsov, E.D.; Taronna, M. On locality, holographi and unfolding. J. High Energy Phys. 2015, 2015, 44. [Google Scholar] [CrossRef]
- Giombi, S.; Klebanov, I.R.; Safdi, B.R. Higher Spin AdSd+1/CFTd at One Loop. Phys. Rev. D 2014, 89, 84004. [Google Scholar] [CrossRef]
- Kuzenko, S.M.; Manvelyan, R.; Theisen, S. Off-shell superconformal higher spin multiplets in four dimensions. J. High Energy Phys. 2017, 2017, 34. [Google Scholar] [CrossRef]
- Kuzenko, S.M.; Tsulaia, M. Off-shell massive = 1 supermultiplets in three dimensions. Nucl. Phys. 2017, 914, 160–200. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Y.M. Lagrangian description of massive higher spin supermultiplets in AdS3 space. J. High Energy Phys. 2017, 2017, 21. [Google Scholar] [CrossRef]
- Metsaev, R.R. Fermionic continous spin gauge fields in (A)dS space. Phys. Rev. B 2017, 773, 135–141. [Google Scholar]
- Didenko, V.E.; Vasiliev, M.A. Test of local form of higher-spin equations via AdS/CFT. Phys. Rev. B 2017, 775, 352–360. [Google Scholar] [CrossRef]
- Vasiliev, M.A. On the local framein nonlinear higher-spin equations. arXiv, 2017; arXiv:1707.03735. [Google Scholar]
- Zinoviev, Y.M. Infinite spin fields in d = 3 and beyond. Universe 2017, 3, 63. [Google Scholar] [CrossRef]
- Basilie, T.; Bonezzi, R.; Boulanger, N. The Schouten tensor as a connection in the unfolding 3D conformal higher-spin fields. J. High Energy Phys. 2017, 2017, 54. [Google Scholar] [CrossRef]
- Bonezzi, R.; Boulanger, N.; De Filippi, D. Noncommutative Wilson lines in higher-spin theory and correlation functions for concerved currents for free conformal fields. J. Phys. A 2017, 50, 475401. [Google Scholar] [CrossRef]
- Beccaria, M.; Tseytlin, A.A. On induced action for conformal higher-spins in curved background. Nucl. Phys. B 2017, 919, 359–383. [Google Scholar] [CrossRef]
- Beccaria, M.; Tseytlin, A.A. CT for conformal higher spin fields from partition function on conically deformed sphere. J. High Energy Phys. 2017, 2017, 123. [Google Scholar] [CrossRef]
- Sezgin, E.; Skvortsov, E.D.; Zhu, Y. Chern-Simons matter theories and higher-spin gravity. J. High Energy Phys. 2017, 2017, 133. [Google Scholar] [CrossRef]
- Skvortsov, E.D.; Tran, T. AdS/CFT in Fractional Dimension and Higher-Spins at One Loop. Universe 2017, 3, 61. [Google Scholar] [CrossRef]
- Taronna, M. A note on field redefinitions and higher-spin equations. J. Phys. A 2017, 50, 75401. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher-Spin Algebras, Holography and Flat Space. J. High Energy Phys. 2017, 2017, 95. [Google Scholar]
- Gates, S.J., Jr.; Grisaru, M.T.; Rocek, M.; Siegel, W. Superspace or One Thousand and One Lessons in Supersymmetry. Front. Phys. 1983, 58, 1–58. [Google Scholar]
- Buchbinder, I.L.S.; Kuzenko, M. Ideas and Methods of Supersymmetry and Supergravity Or the Way Through Supespace; IOP Publishing: Bristol, UK; Philadelphia, PA, USA, 1998. [Google Scholar]
- Berends, F.A.; Burgers, G.J.H.; van Dam, H. Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin. Nucl. Phys. B 1986, 271, 429–441. [Google Scholar] [CrossRef]
- Anselmi, D. Higher spin current multiplets in operator product expansions. Class. Quant. Grav. 2000, 17, 1383. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher spin gauge theories: Star-product and AdS space. In The Many Faces of The Superworld; Shifman, M., Ed.; World Scientific: Singapore, 2000. [Google Scholar]
- Konstein, S.E.; Vasiliev, M.A.; Zaikin, V.N. Conformal higher spin currents in any dimension and AdS/CFT correspondence. J. High Energy Phys. 2000, 2000, 18. [Google Scholar] [CrossRef]
- Vasiliev, M.A.; Gelfond, O.G.A.; Skvortsov, E.D. Higher spin conformal currents in Minkowski space. Theor. Math. Phys. 2008, 154, 294–302. [Google Scholar] [CrossRef]
- Bekaert, X.; Joung, E.; Mourad, J. On higher spin interactions with matter. J. High Energy Phys. 2009, 2009, 126. [Google Scholar] [CrossRef]
- Bekaert, X.; Meunier, E. Higher spin interactions with scalar matter on a constant curvature spacetimes: Conserved current and cubic coupling generating functions. J. High Energy Phys. 2010, 2010, 116. [Google Scholar] [CrossRef]
- Bekaert, X.; Joung, E.; Mourad, J. Effective action in a higher spin background. J. High Energy Phys. 2011, 2011, 48. [Google Scholar]
- Sleight, C.; Taronna, M. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings. Phys. Rev. Lett. 2016, 116, 181602. [Google Scholar] [CrossRef] [PubMed]
- Gelfond, O.A.; Vasiliev, M.A. Current interactions from the one-form sector of nonlinear higher-spin equations. arXiv, 2012; arXiv:1706.03718. [Google Scholar]
- Buchbinder, I.L.; Fotopoulos, A.; Petkou, A.C.; Tsulaia, M. Constructing the cubic interaction vertex of higher spin gauge fields. Phys. Rev. D 2006, 74, 105018. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Gauge form of description of massless fields with arbitrary spin. Phys. Atom. Nuclei 1980, 32, 855–861. [Google Scholar]
- Kuzenko, S.M.; Postnikov, V.V.; Sibiryakov, A.G. Massless gauge superfields of higher half integer superspins. J. Exp. Theor. Phys. Lett. 1993, 57, 534–538. [Google Scholar]
- Kuzenko, S.M.; Sibiryakov, A.G. Massless gauge superfields of higher integer superspins. J. Exp. Theor. Phys. Lett. 1993, 57, 539–542. [Google Scholar]
- Kuzenko, S.M.; Sibiryakov, A.G. Free massless higher-superspin superfields on the anti-de Sitter superspace. Phys. Atom. Nucl 1994, 57, 1257–1267. [Google Scholar]
- Gates, S.J., Jr.; Koutrolikos, K. On 4D, = 1 massless gauge superfields of arbitrary superhelicity. J. High Energy Phys. 2014, 2014, 98. [Google Scholar] [CrossRef]
- Gates, S.J.; Koutrolikos, K. From Diophantus to Supergravity and massless higher spin multiplets. J. High Energy Phys. 2017, 2017, 63. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Koutrolikos, K. BRST Analysis of the Supersymmetric Higher Spin Field Models. J. High Energy Phys. 2015, 2015, 1–27. [Google Scholar] [CrossRef]
- Osborn, H. = 1 superconformal symmetry in four-dimensional quantum field theory. Ann. Phys. 1999, 272, 243–294. [Google Scholar] [CrossRef]
- Magro, M.; Sachs, I.; Wolf, S. Superfield Noether procedure. Ann. Phys. 2002, 298, 123–126. [Google Scholar] [CrossRef]
- Metsaev, R.R. Cubic interaction vertices of massive and massless higher spin fields. Nucl. Phys. B 2006, 759, 147–201. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Vasiliev, M.A. Candidate to the Role of Higher Spin Symmetry. Ann. Phys. 1987, 177, 63–112. [Google Scholar] [CrossRef]
- Boulanger, N.; Ponomarev, D.; Skvortsov, E.; Taronna, M. On the uniqueness of higher-spin symmetries in AdS and CFT. Int. J. Mod. Phys. A 2013, 28, 1350162. [Google Scholar] [CrossRef]
- Gates, S.J.; Kuzenko, S.M.; Sibiryakov, A.G. = 2 supersymmetry of higher superspin massless theories. Phys. Lett. B 1997, 412, 59–68. [Google Scholar] [CrossRef]
- Ferrara, S.; Zumino, B. Transformation Properties of the Supercurrent. Nucl. Phys. B 1975, 87, 207–220. [Google Scholar] [CrossRef]
- Galperin, A.S.; Ivanov, E.A.; Ogievetsky, V.I.; Sokatchev, E.S. Harmonic Superspace; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
1. | For example, Fradkin-Vasiliev cubic interaction vertex of massless higher spin fields with gravity requires the AdS background. |
2. | |
3. | |
4. | A BRST approach to the construction of cubic vertex has been developed in [68]. |
5. | See also a formulation of supersymmetric gauge theory in the framework of BRST approach [75]. |
6. | This is the “economical” description according to [74]. |
7. | We use the conventions of Superspace [56] which include , and . |
8. | From this point forward, when the integration is over the entire superspace the measure will not be explicitly written but it will be implied. |
9. | has its own redundancy with . |
10. | The Jacobi identity requires an infinite tower of fields with unbounded spin. |
11. | Multiply the terms inside the curly bracket with . |
12. | Keep in mind the difference in conventions for the covariant spinorial derivatives. |
13. | Keep in mind that the on-shell equation of motion for a free massive chiral is . |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchbinder, I.L.; Gates, S.J.; Koutrolikos, K. Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices. Universe 2018, 4, 6. https://doi.org/10.3390/universe4010006
Buchbinder IL, Gates SJ, Koutrolikos K. Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices. Universe. 2018; 4(1):6. https://doi.org/10.3390/universe4010006
Chicago/Turabian StyleBuchbinder, Ioseph L., S. James Gates, and Konstantinos Koutrolikos. 2018. "Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices" Universe 4, no. 1: 6. https://doi.org/10.3390/universe4010006
APA StyleBuchbinder, I. L., Gates, S. J., & Koutrolikos, K. (2018). Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices. Universe, 4(1), 6. https://doi.org/10.3390/universe4010006