Regular Solutions in Higher-Derivative Gravity †
Abstract
:1. Introduction
2. Field Generated by a Static Point-Like Mass
3. Finiteness of the Metric Potentials
4. Curvature Regularity
5. Higher Derivatives as Source Regularization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Modesto, L.; Shapiro, I.L. Superrenormalizable quantum gravity with complex ghosts. Phys. Lett. B 2016, 755, 279–284. [Google Scholar] [CrossRef]
- Modesto, L. Super-renormalizable or finite Lee-Wick quantum gravity. Nucl. Phys. B 2016, 909, 584–606. [Google Scholar] [CrossRef]
- Krasnikov, N.V. Nonlocal Gauge Theories. Theor. Math. Phys. 1987, 73, 1184–1190. [Google Scholar] [CrossRef]
- Kuzmin, Y.V. The Convergent Nonlocal Gravitation. Sov. J. Nucl. Phys. 1989, 50, 1011–1014. [Google Scholar]
- Tomboulis, E.T. Superrenormalizable gauge and gravitational theories. arXiv, 1997; arXiv:hep-th/9702146. [Google Scholar]
- Modesto, L. Super-renormalizable quantum gravity. Phys. Rev. D 2012, 86, 044005. [Google Scholar] [CrossRef]
- Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards Singularity- and Ghost-Free Theories of Gravity. Phys. Rev. Lett. 2012, 108, 031101. [Google Scholar] [CrossRef] [PubMed]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Asorey, M.; Lopez, J.L.; Shapiro, I.L. Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 1997, 12, 5711–5734. [Google Scholar] [CrossRef]
- Modesto, L.; Netto, T.D.; Shapiro, I.L. On Newtonian singularities in higher derivative gravity models. J. High Energy Phys. 2015, arXiv:1412.07402015, 98. [Google Scholar] [CrossRef]
- Giacchini, B.L. On the cancellation of Newtonian singularities in higher-derivative gravity. Phys. Lett. B 2017, 766, 306–311. [Google Scholar] [CrossRef]
- Giacchini, B.L.; Netto, T.D. Weak-field limit and regular solutions in polynomial higher-derivative gravities. arXiv, 2018; arXiv:1806.05664. [Google Scholar]
- Giacchini, B.L.; Netto, T.D. Effective delta sources and regularity in higher-derivative and ghost-free gravity. arXiv, 2018; arXiv:1809.05907. [Google Scholar]
- Accioly, A.; Giacchini, B.L.; Shapiro, I.L. Low-energy effects in a higher-derivative gravity model with real and complex massive poles. Phys. Rev. D 2017, 96, 104004. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Classical Gravity with Higher Derivatives. Gen. Relativ. Gravit. 1978, 9, 353–371. [Google Scholar] [CrossRef]
- Lü, H.; Perkins, A.; Pope, C.N.; Stelle, K.S. Black Holes in Higher-Derivative Gravity. Phys. Rev. Lett. 2015, 114, 171601. [Google Scholar] [CrossRef]
- Lü, H.; Perkins, A.; Pope, C.N.; Stelle, K.S. Spherically Symmetric Solutions in Higher-Derivative Gravity. Phys. Rev. D 2015, 92, 124019. [Google Scholar] [CrossRef]
- Frolov, V.P. Mass-gap for black hole formation in higher derivative and ghost free gravity. Phys. Rev. Lett. 2015, 115, 051102. [Google Scholar] [CrossRef] [PubMed]
- Frolov, V.P.; Zelnikov, A.; Netto, T.D. Spherical collapse of small masses in the ghost-free gravity. J. High Energy Phys. 2015, arXiv:1504.004122015, 107. [Google Scholar] [CrossRef]
- Frolov, V.P.; Zelnikov, A. Head-on collision of ultrarelativistic particles in ghost-free theories of gravity. Phys. Rev. D 2016, 93, 064048. [Google Scholar] [CrossRef] [Green Version]
- Edholm, J.; Koshelev, A.S.; Mazumdar, A. Behavior of the Newtonian potential for ghost-free gravity and singularity-free gravity. Phys. Rev. D 2016, 94, 104033. [Google Scholar] [CrossRef]
- Buoninfante, L.; Koshelev, A.S.; Lambiase, G.; Mazumdar, A. Classical properties of non-local, ghost- and singularity-free gravity. J. Cosmol. Astropart. Phys. 2018, arXiv:1802.003991809, 034. [Google Scholar] [CrossRef]
- Buoninfante, L.; Koshelev, A.S.; Lambiase, G.; Marto, J.; Mazumdar, A. Conformally-flat, non-singular static metric in infinite derivative gravity. J. Cosmol. Astropart. Phys. 2018, arXiv:1804.081952018, 014. [Google Scholar] [CrossRef]
- Holdom, B. On the fate of singularities and horizons in higher derivative gravity. Phys. Rev. D 2002, 66, 084010. [Google Scholar] [CrossRef]
- Accioly, A.; Giacchini, B.L.; Shapiro, I.L. On the gravitational seesaw in higher-derivative gravity. Eur. Phys. J. C 2017, arXiv:1604.0734877, 540. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacchini, B.L.; De Paula Netto, T. Regular Solutions in Higher-Derivative Gravity. Universe 2018, 4, 140. https://doi.org/10.3390/universe4120140
Giacchini BL, De Paula Netto T. Regular Solutions in Higher-Derivative Gravity. Universe. 2018; 4(12):140. https://doi.org/10.3390/universe4120140
Chicago/Turabian StyleGiacchini, Breno L., and Tibério De Paula Netto. 2018. "Regular Solutions in Higher-Derivative Gravity" Universe 4, no. 12: 140. https://doi.org/10.3390/universe4120140
APA StyleGiacchini, B. L., & De Paula Netto, T. (2018). Regular Solutions in Higher-Derivative Gravity. Universe, 4(12), 140. https://doi.org/10.3390/universe4120140