Probing the Vacuum Decay Hypothesis with Growth Function Data
Abstract
:1. Introduction
2. The Method
2.1. Approach I
2.2. Approach II
3. Observational Constraints
3.1. Dark Energy Equivalence
3.2. Growth Function
3.3. Constraints
4. Final Remarks
Acknowledgments
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. Cosmological Constant and Elementary Particles. J. Exp. Theor. Phys. Lett. 1967, 6, 316. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–24. [Google Scholar] [CrossRef]
- Bousso, R. TASI Lectures on the Cosmological Constant. Gen. Relativ. Gravit. 2008, 40, 607–637. [Google Scholar] [CrossRef]
- Emelyanov, V.; Klinkhamer, F.R. Possible solution to the main cosmological constant problem. Phys. Rev. D 2012, 85, 103508. [Google Scholar] [CrossRef]
- Shaw, D.J.; Barrow, J.D. The Value of the Cosmological Constant. Phys. Rev. D 2011, 83, 043518. [Google Scholar] [CrossRef]
- Barrow, J.D.; Shaw, D.J. A New Solution of The Cosmological Constant Problems. Phys. Rev. Lett. 2011, 106, 101302. [Google Scholar] [CrossRef] [PubMed]
- Aslanbeigi, S.; Robbers, G.; Foster, B.Z.; Kohri, K.; Afshordi, N. Phenomenology of gravitational aether as a solution to the old cosmological constant problem. Phys. Rev. D 2011, 84, 103522. [Google Scholar] [CrossRef]
- Mannheim, P.D. Comprehensive solution to the cosmological constant, zero-point energy, and quantum gravity problems. Gen. Rel. Grav. 2011, 43, 703–750. [Google Scholar] [CrossRef]
- Linde, A.; Vanchurin, V. Towards a non-anthropic solution to the cosmological constant problem. arXiv, 2010; arXiv:1011.0119. [Google Scholar]
- Stefancic, H. The solution of the cosmological constant problem from the inhomogeneous equation of state—A hint from modified gravity? Phys. Lett. B 2009, 670, 246–253. [Google Scholar] [CrossRef]
- Garriga, J.; Vilenkin, A. Solutions to the cosmological constant problems. Phys. Rev. D 2001, 64, 023517. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M.; Remmen, G.N. A nonlocal approach to the cosmological constant problem. Phys. Rev. D 2017, 95, 123504. [Google Scholar] [CrossRef]
- Bauer, F. The running of the cosmological and the Newton constant controlled by the cosmological event horizon. Quant. Grav. 2005, 22, 3533–3548. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L.; Tortara, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Gibbons, G.W.; Gundlach, C. Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett. 1990, 64, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.J.A.P.; Menegoni, E.; Galli, S.; Mangano, G.; Melchiorri, A. Varying couplings in the early universe: Correlated variations of α and G. Phys. Rev. D 2010, 82, 023532. [Google Scholar] [CrossRef]
- Cao, S.; Chen, Y.; Zhang, J.; Ma, Y. Testing the Interaction Between Baryons and Dark Energy with Recent Cosmological Observations. Int. J. Theor. Phys. 2015, 54, 1492–1505. [Google Scholar] [CrossRef]
- Borges, H.A.; Carneiro, S. Friedmann cosmology with decaying vacuum density. Gen. Relativ. Gravit. 2005, 37, 1385–1394. [Google Scholar] [CrossRef]
- Alcaniz, J.S.; Lima, J.A.S. Interpreting cosmological vacuum decay. Phys. Rev. D 2005, 72, 063516. [Google Scholar] [CrossRef]
- Zimdahl, W.; Borges, H.A.; Carneiro, S.; Fabris, J.C.; Hipolito-Ricaldi, W.S. Non-adiabatic perturbations in decaying vacuum cosmology. J. Cosmol. Astropart. Phys. 2011, 2011, 028. [Google Scholar] [CrossRef]
- Velten, H.; Borges, H.A.; Carneiro, S.; Fazolo, R.; Gomes, S. Large-scale structure and integrated Sachs–Wolfe effect in decaying vacuum cosmology. Mon. Not. R. Astron. Soc. 2015, 452, 2220–2224. [Google Scholar] [CrossRef]
- Sola, J.; Perez, J.C.; Gomez-Valent, A. Towards the firsts compelling signs of vacuum dynamics in modern cosmological observations. arXiv, 2017; arXiv:1703.08218. [Google Scholar]
- Overduin, J.M.; Cooperstock, F.I. Evolution of the scale factor with a variable cosmological term. Phys. Rev. D 1998, 58, 043506. [Google Scholar] [CrossRef]
- Wang, P.; Meng, X. Can vacuum decay in our Universe? Class. Quant. Gravity 2005, 22, 283–294. [Google Scholar] [CrossRef]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. Ser. 2007, 170, 377. [Google Scholar]
- Dunkley, J.; Komatsu, E.; Nolta, M.R.; Spergel, D.N.; Larson, D.; Hinshaw, G.; Page, L.; Bennett, C.L.; Gold, B.; Jarosik, N.; Weiland, J.L. Five-Year Wilkinson Microwave Anisotropy Probe* Observations: Likelihoods and Parameters from The Wmap Data. Astrophys. J. Suppl. Ser. 2009, 180, 306–329. [Google Scholar] [CrossRef]
- Larson, D.; Dunkley, J.; Hinshaw, G.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Halpern, M.; Hill, R.S.; Jarosik, N.; et al. Seven-Year Wilkinson Microwave Anisotropy Probe (Wmap*) Observations: Power Spectra And Wmap-Derived Parameters. Astrophys. J. Suppl. 2011, 192, 16. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-xiii. cosmological parameters. Astrono. Astrophys. 2016, 594, A13. [Google Scholar]
- Grande, J.; Pelinson, A.; Solà, J. Dark energy perturbations and cosmic coincidence. Phys. Rev. D 2009, 79, 043006. [Google Scholar] [CrossRef]
- Arcuri, R.C.; Waga, I. Growth of density inhomogeneities in Newtonian cosmological models with variable Λ. Phys. Rev D 1994, 50, 2928–2931. [Google Scholar] [CrossRef]
- Jones, D.O.; Scolnic, D.M.; Riess, A.G.; Rest, A.; Kirshner, R.P.; Berger, E.; Kessler, R.; Pan, Y.-C.; Foley, R.J.; Chornock, R.; et al. Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters. arXiv, 2017; arXiv:1710.00846. [Google Scholar]
- Guzzo, L.; Pierleoni, M.; Meneux, B.; Branchini, E.; le Fèvre, O.; Marinoni, C.; Garilli, B.; Blaizot, J.; de Lucia, G.; Pollo, A.; et al. A test of the nature of cosmic acceleration using galaxy redshift distortions. Nature 2008, 451, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Verde, L.; Heavens, A.F.; Percival, W.J.; Matarrese, S.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Colless, M.; et al. The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the Universe. Mon. Not. R. Astron. Soc. 2002, 335, 432–440. [Google Scholar] [CrossRef]
- Hawkins, E.; Maddox, S.; Cole, S.; Lahav, O.; Madgwick, D.S.; Norberg, P.; Peacock, J.A.; Baldry, I.K.; Baugh, C.M.; Bland-Hawthorn, J.; et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe. Mon. Not. R. Astron. Soc. 2003, 346, 78–96. [Google Scholar] [CrossRef]
- Blake, C.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Davis, T.; Drinkwater, M.J.; Forster, K.; Gilbank, D.; et al. The WiggleZ Dark Energy Survey: The growth rate of cosmic structure since redshift z = 0.9. Mon. Not. R. Astron. Soc. 2011, 415, 2876–2891. [Google Scholar] [CrossRef]
- Reyes, R.; Mandelbaum, R.; Seljak, U.; Baldauf, T.; Gunn, J.E.; Lombriser, L.; Smith, R.E. Confirmation of general relativity on large scales from weak lensing and galaxy velocities. Nature 2010, 464, 256–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabré, A.; Gata naga, E. Clustering of luminous red galaxies—I. Large-scale redshift-space distortions. Mon. Not. R. Astron. Soc. 2009, 393, 1183–1208. [Google Scholar] [CrossRef]
- Tegmar, M.; Eisenstein, D.; Strauss, M.; Weinberg, D.; Blanton, M.; Frieman, J.; Fukugita, M.; Gunn, J.; Hamilton, A.; Knapp, G.; et al. Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 2006, 74, 123507. [Google Scholar] [CrossRef] [Green Version]
- Blake, C.; Brough, S.; Colless, M.; Couch, W.; Croom, S.; Davis, T.; Drinkwater, M.J.; Forster, K.; Glazebrook, K.; Jelliffe, B.; et al. The WiggleZ Dark Energy Survey: The selection function and z = 0.6 galaxy power spectrum. Mon. Not. R. Astron. Soc. 2010, 406, 803–821. [Google Scholar] [CrossRef]
- Ross, N.P.; daÂngela, J.; Shanks, T.; Wake, D.A.; Cannon, R.D.; Edge, A.C.; Nichol, R.C.; Outram, P.J.; Colless, M.; Couch, W.J.; et al. The 2dF-SDSS LRG and QSO Survey: The LRG 2-point correlation function and redshift-space distortions. Mon. Not. R. Astron. Soc. 2007, 381, 573–588. [Google Scholar] [CrossRef] [Green Version]
- DaÂngela, J.; Shanks, T.; Croom, S.M.; Weilbacher, P.; Brunner, R.J.; Couch, W.J.; Miller, L.; Myers, A.D.; Nichol, R.C.; Pimbblet, K.A.; et al. The 2dF-SDSS LRG and QSO survey: QSO clustering and the L–z degeneracy. Mon. Not. R. Astron. Soc. 2008, 383, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Viel, M.; Haehnelt, M.G.; Springel, V. Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra. Mon. Not. R. Astron. Soc. 2004, 354, 684–694. [Google Scholar] [CrossRef]
- Bielby, R.; Hill, M.D.; Shanks, T.; Crighton, N.H.M.; Infante, L.; Bornancini, C.G.; Francke, H.; Héraudeau, P.; Lambas, D.G.; Metcalfe, N.; et al. The VLT LBG Redshift Survey—III. The clustering and dynamics of Lyman-break galaxies at z-3. Mon. Not. R. Astron. Soc. 2013, 430, 425–449. [Google Scholar] [CrossRef]
- Dantas, M.A.; Alcaniz, J.S.; Mania, D.; Ratra, B. Time and distance constraints on accelerating cosmological models. Phys. Lett. B 2011, 699, 239–245. [Google Scholar] [CrossRef]
- Nunes, R.C.; Barboza, E.M., Jr. Dark matter-dark energy interaction for a time-dependent EoS parameter. Gen. Rel. Grav. 2014, 46, 1820. [Google Scholar] [CrossRef]
- Barboza, E.M., Jr.; da C. Nunes, R.; Abreu, E.M.C.; Neto, J.A. Dark energy models through nonextensive Tsallis’ statistics. Phys. A Stat. Mech. Appl. 2015, 436, 301–310. [Google Scholar] [CrossRef]
- Carvalho, F.C.; Alcaniz, J.S.; Lima, J.A.S.; Silva, R. Scalar-Field-Dominated Cosmology with a Transient Acceleration Phase. Phys. Rev. Lett. 2006, 97, 081301. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.E.M.; Alcaniz, J.S. Cosmological consequences of a possible Λ-dark matter interaction. Phys. Rev. D 2010, 81, 043506. [Google Scholar] [CrossRef]
- Costa, F.E.M. Coupled quintessence with a possible transient accelerating phase. Phys. Rev. D 2010, 82, 103527. [Google Scholar] [CrossRef]
1. | Although it is possible, coupling with baryons implies a variation of baryonic particles masses, which are tightly constrained by Big Bang nucleosynthesis. Furthermore, solar system experiments [17,18], bounds on the variation of fundamental constants [19,20] and even background tests [21] constrained a possible coupling with baryons to be very small and despicable in front of dark matter coupling. |
2. | The vacuum energy is assumed homogeneous since, in the scales considered in this paper (subhorizon), the matter perturbations dominates over the vacuum energy density perturbations, which can be neglected [33]. |
z | f | Ref. | |
---|---|---|---|
0.15 | 0.49 | 0.14 | [36] |
0.15 | 0.51 | 0.11 | [37,38] |
0.22 | 0.60 | 0.10 | [39] |
0.32 | 0.654 | 0.18 | [40] |
0.34 | 0.64 | 0.09 | [41] |
0.35 | 0.70 | 0.18 | [42] |
0.41 | 0.70 | 007 | [39] |
0.42 | 0.73 | 0.09 | [43] |
0.55 | 0.75 | 0.18 | [44] |
0.59 | 0.75 | 0.09 | [43] |
0.60 | 0.73 | 0.07 | [39] |
0.77 | 0.91 | 0.36 | [36] |
0.78 | 0.70 | 0.08 | [39] |
1.4 | 0.90 | 0.24 | [45] |
2.125 | 0.78 | 0.24 | [46] |
2.72 | 0.78 | 0.24 | [46] |
3.0 | 0.99 | 0.24 | [47] |
Approach I | 1.941 | |||
Approach II | 1.285 | |||
CDM model | 0 | 0 | 0 | 2.857 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barboza, E.M., Jr. Probing the Vacuum Decay Hypothesis with Growth Function Data. Universe 2018, 4, 39. https://doi.org/10.3390/universe4020039
Barboza EM Jr. Probing the Vacuum Decay Hypothesis with Growth Function Data. Universe. 2018; 4(2):39. https://doi.org/10.3390/universe4020039
Chicago/Turabian StyleBarboza, Edésio M., Jr. 2018. "Probing the Vacuum Decay Hypothesis with Growth Function Data" Universe 4, no. 2: 39. https://doi.org/10.3390/universe4020039
APA StyleBarboza, E. M., Jr. (2018). Probing the Vacuum Decay Hypothesis with Growth Function Data. Universe, 4(2), 39. https://doi.org/10.3390/universe4020039