Mathematical Formulation of the No-Go Theorem in Horndeski Theory †
Abstract
:1. Introduction and Summary
2. No-Go Theorem
- Assumptions:
- (1) , , Σ, Θ, and a are smooth functions of coordinate q1.
- (2)
- Statement:
- The only relevant function choice to satisfy the assumptions is everywhere.
3. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Rubakov, V.A. The Null Energy Condition and its violation. Phys. Usp. 2014, 57, 128. [Google Scholar] [CrossRef]
- Libanov, M.; Mironov, S.; Rubakov, V. Generalized Galileons: Instabilities of bouncing and Genesis cosmologies and modified Genesis. JCAP 2016, 2016, 037. [Google Scholar] [CrossRef]
- Kobayashi, T. Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem. Phys. Rev. D 2016, 94, 043511. [Google Scholar] [CrossRef] [Green Version]
- Kolevatov, R.; Mironov, S. Cosmological bounces and Lorentzian wormholes in Galileon theories with an extra scalar field. Phys. Rev. D 2016, 94, 123516. [Google Scholar] [CrossRef] [Green Version]
- Evseev, O.A.; Melichev, O.I. No static spherically symmetric wormholes in Horndeski theory. Phys. Rev. D 2018, 97, 124040. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Kolevatov, R.; Mironov, S.; Sukhov, N.; Volkova, V. Cosmological bounce and Genesis beyond Horndeski. JCAP 2017, 2017, 038. [Google Scholar] [CrossRef]
- Mironov, S.; Rubakov, V.; Volkova, V. More about stable wormholes in beyond Horndeski theory. arXiv, 2018; arXiv:1812.07022. [Google Scholar]
- Kolevatov, R.; Mironov, S.; Rubakov, V.; Sukhov, N.; Volkova, V. Perturbations in generalized Galileon theories. Phys. Rev. D 2017, 96, 125012. [Google Scholar] [CrossRef] [Green Version]
- Mironov, S.; Volkova, V. Properties of perturbations in beyond Horndeski theories. Int. J. Mod. Phys. A 2018, 33, 1850155. [Google Scholar] [CrossRef]
- Ijjas, A. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions. JCAP 2018, 2018, 007. [Google Scholar] [CrossRef]
- Mironov, S.; Rubakov, V.; Volkova, V. Bounce beyond Horndeski with GR asymptotics and γ-crossing. JCAP 2018, 2018, 050. [Google Scholar] [CrossRef]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: The odd-parity sector. Phys. Rev. D 2012, 85, 084025, Erratum: [Phys. Rev. D 2017, 96, 109903, doi:10.1103/PhysRevD.96.109903]. [Google Scholar] [CrossRef]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: The even-parity sector. Phys. Rev. D 2014, 89, 084042. [Google Scholar] [CrossRef]
1. | Coordinate q stands for time coordinate in a cosmological setup and radial coordinate in a static, spherically symmetric case, for instance, in a wormhole setup. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironov, S. Mathematical Formulation of the No-Go Theorem in Horndeski Theory. Universe 2019, 5, 52. https://doi.org/10.3390/universe5020052
Mironov S. Mathematical Formulation of the No-Go Theorem in Horndeski Theory. Universe. 2019; 5(2):52. https://doi.org/10.3390/universe5020052
Chicago/Turabian StyleMironov, Sergey. 2019. "Mathematical Formulation of the No-Go Theorem in Horndeski Theory" Universe 5, no. 2: 52. https://doi.org/10.3390/universe5020052
APA StyleMironov, S. (2019). Mathematical Formulation of the No-Go Theorem in Horndeski Theory. Universe, 5(2), 52. https://doi.org/10.3390/universe5020052