General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives
Abstract
:1. Introduction
2. Models for the Non-Gravitational Perturbations
2.1. Internal Structure
2.2. Spin Dynamics
2.3. Neutral Drag
2.4. Thermal Effects
- a complete physical characterization of the various elements that constitute the satellite, that is, emission and absorption coefficients, thermal conductivity, heat capacity, thermal inertia, …;
- knowledge of the rotational dynamics of the satellite, that is, of its spin orientation and rate;
- a reliable model for the radiation sources: Sun and (especially) Earth.
3. Precise Orbit Determination (POD)
4. A New Measurement of the Lense-Thirring (LT) Effect
4.1. On the Role of the Background Gravitational Field
4.2. On the Role of the Neutral Drag
4.3. A Precise Measurement of the LT Effect
5. State-Of-The-Art of Relativistic Measurements with Laser-Ranged Satellites
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Degnan, J.J. Satellite laser ranging: Current status and future prospects. IEEE Trans. Geosci. Remote Sens. 1985, 23, 398–413. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Bender, P.L.; Currie, D.G.; Dicke, R.H.; Eckhardt, D.H.; Faller, J.E.; Kaula, W.M.; Mulholland, J.D.; Plotkin, H.H.; Poultney, S.K.; Silverberg, E.C.; et al. The Lunar Laser Ranging Experiment. Science 1973, 182, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Dickey, J.O.; Bender, P.L.; Faller, J.E.; Newhall, X.X.; Ricklefs, R.L.; Ries, J.G.; Shelus, P.J.; Veillet, C.; Whipple, A.L.; Wiant, J.R.; et al. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkowitz, S.M. Tests of Gravity Using Lunar Laser Ranging. Living Rev. Relativ. 2010, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Rummel, R. The interdisciplinary role of space geodesy-Revisited. J. Geodyn. 2010, 49, 112–115. [Google Scholar] [CrossRef]
- Combrinck, L. A Comparison of General Relativity Theory Evaluations using VLBI and SLR: Will GGOS Improve These Results? In Proceedings of the Seventh General Meeting of the international VLBI Service for Geodesy and Astrometry, Madrid, Spain, 4–9 March 2012. [Google Scholar]
- Soffel, M.H. Relativity in Astrometry, Celestial Mechanics and Geodesy; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1989. [Google Scholar]
- Kopeikin, S.M.; Mazurova, E.M.; Karpik, A.P. Towards an exact relativistic theory of Earth’s geoid undulation. Phys. Lett. A 2015, 379, 1555–1562. [Google Scholar] [CrossRef]
- Kopeikin, S.M. Reference Ellipsoid and Geoid in Chronometric Geodesy. Front. Astron. Space Sci. 2016, 3, 5. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Lämmerzahl, C. Relativistic Geodesy, Fundamental Theories of Physics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Kopeikin, S.; Han, W.; Mazurova, E. Post-Newtonian reference ellipsoid for relativistic geodesy. Phys. Rev. D 2016, 93, 044069. [Google Scholar] [CrossRef] [Green Version]
- Delva, P.; Geršl, J. Theoretical Tools for Relativistic Gravimetry, Gradiometry and Chronometric Geodesy and Application to a Parameterized Post-Newtonian Metric. Universe 2017, 3, 24. [Google Scholar] [CrossRef]
- Philipp, D.; Puetzfeld, D.; Lämmerzahl, C. On the Applicability of the Geodesic Deviation Equation in General Relativity. In Relativistic Geodesy, Fundamental Theories of Physics; Puetzfeld, D., Lämmerzahl, C., Eds.; Springer: Cham, Switzerland, 2019; p. 419. [Google Scholar] [CrossRef]
- Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A. Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cim. A 1996, 109, 575–590. [Google Scholar] [CrossRef]
- Ciufolini, I.; Lucchesi, D.; Vespe, F.; Chieppa, F. Measurement of gravitomagnetism. Europhys. Lett. 1997, 39, 359–364. [Google Scholar] [CrossRef]
- Ciufolini, I.; Chieppa, F.; Lucchesi, D.; Vespe, F. Test of Lense–Thirring orbital shift due to spin. Class. Quantum Grav. 1997, 14, 2701–2726. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.; Chieppa, F.; Fernandes-Vieira, E.; Perez-Mercader, J. Test of General Relativity and Measurement of the Lense-Thirring Effect with Two Earth Satellites. Science 1998, 279, 2100–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Ciufolini, I.; Pavlis, E.C.; Peron, R. Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 2006, 11, 527–550. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchesi, D.M.; Peron, R. LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics. Phys. Rev. D 2014, 89, 082002. [Google Scholar] [CrossRef]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Koenig, R.; Ries, J.; Gurzadyan, V.; Matzner, R.; Penrose, R.; Sindoni, G.; Paris, C.; et al. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. C 2016, 76, 120. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Magnafico, C.; Peron, R.; Visco, M.; Anselmo, L.; Pardini, C.; Bassan, M.; Pucacco, G.; Stanga, R. The LARASE research program. State of the art on Modelling and Measurements of General Relativity effects in the field of the Earth: A preliminary measurement of the Lense-Thirring effect. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017; pp. 131–145. [Google Scholar] [CrossRef]
- Lucchesi, D.; Anselmo, L.; Bassan, M.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE). Class. Quantum Grav. 2015, 32, 155012. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Poisson, E.; Will, C.M. Gravity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Mashhoon, B.; Hehl, F.W.; Theiss, D.S. On the gravitational effects of rotating masses–The Thirring-Lense Papers. Gen. Rel. Grav. 1984, 16, 711–750. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Thorne, K.S.; Price, R.H.; MacDonald, D.A. Black Holes: The Membrane Paradigm; Yale University Press: New Haven, CT, USA, 1986. [Google Scholar]
- Thorne, K.S. Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. In Near Zero: New Frontiers of Physics; Fairbank, J.D., Deaver, B.S., Jr., Everitt, C.W.F., Michelson, P.F., Eds.; W.H. Freeman and Co.: New York, NY, USA, 1988; pp. 573–586. [Google Scholar]
- Thorne, K.S. Chapter Experimental Gravity, Gravitational Waves, and Quantum Nondemolition; An Introduction. In Quantum Optics, Experimental Gravity, and Measurement Theory; Springer US: Boston, MA, USA, 1983; pp. 325–346. [Google Scholar]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Cohen, S.C.; Smith, D.E. Lageos scientific results—Introduction. J. Geophys. Res. 1985, 90, 9217–9220. [Google Scholar] [CrossRef]
- Paolozzi, A.; Ciufolini, I. LARES successfully launched in orbit: Satellite and mission description. Acta Astronaut. 2013, 91, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Visco, M.; Lucchesi, D.M. Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE program. Adv. Space Res. 2016, 57, 1928–1938. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L. The rotation of Lageos. J. Geophys. Res. 1991, 96, 2431–2440. [Google Scholar] [CrossRef]
- Farinella, P.; Vokrouhlicky, D.; Barlier, F. The rotation of LAGEOS and its long-term semimajor axis decay: A self-consistent solution. J. Geophys. Res. 1996, 101, 17861–17872. [Google Scholar] [CrossRef]
- Andrés, J.I.; Noomen, R.; Bianco, G.; Currie, D.G.; Otsubo, T. Spin axis behavior of the LAGEOS satellites. J. Geophys. Res. (Solid Earth) 2004, 109, 2994. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Comprehensive model for the spin evolution of the LAGEOS and LARES satellites. Phys. Rev. D 2018, 98, 044034. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, D.; Lim, H.C.; Kirchner, G.; Hwang, J.Y. Spin parameters of LAGEOS-1 and LAGEOS-2 spectrally determined from Satellite Laser Ranging data. Adv. Space Res. 2013, 52, 1332–1338. [Google Scholar] [CrossRef]
- Andrés de la Fuente, J.I. Enhanced Modelling of LAGEOS Non-Gravitational Perturbations. Ph.D. Thesis, Delft University Press, Delft, The Netherlands, 2007. [Google Scholar]
- Lucchesi, D.M.; Peron, R.; Visco, M.; Anselmo, L.; Pardini, C.; Bassan, M.; Pucacco, G. Fundamental physics in the field of the Earth with the laser ranged satellites experiment (LARASE). In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; pp. 71–76. [Google Scholar] [CrossRef]
- Pavlis, D.E.; Luo, S.; Dahiroc, P.; McCarthy, J.J.; Luthke, S.B. GEODYN II Operations Manual; NASA GSFC: Greenbelt, MD, USA, 1998.
- Pardini, C.; Anselmo, L. SATRAP: Satellite Reentry Analysis Program; Internal Report C94-17; CNUCE Institute, Consiglio Nazionale delle Ricerche (CNR): Pisa, Italy, 1994. [Google Scholar]
- Pardini, C.; Moe, K.; Anselmo, L. Thermospheric density model biases at the 23rd sunspot maximum. Plan. Space Sci. 2012, 67, 130–146. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. On the secular decay of the LARES semi-major axis. Acta Astronaut. 2017, 140, 469–477. [Google Scholar] [CrossRef]
- Cappellari, J.O.; Velez, C.E.; Fuchs, A.J. Mathematical theory of the Goddard trajectory determination system. NASA STI/Recon Tech. Rep. N 1976, 76, 24291. [Google Scholar]
- Hedin, A.E. MSIS-86 thermospheric model. J. Geophys. Res. 1987, 92, 4649–4662. [Google Scholar] [CrossRef]
- Hedin, A.E. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 1991, 96, 1159–1172. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Volkov, I.I. Earth’s Upper Atmosphere Density Model for Ballistic Support of the Flight of Artificial Earth Satellites GOST R 25645.166-2004; Technical Report; Publishing House of the Standards: Moscow, Russia, 2004. [Google Scholar]
- Rubincam, D. On the secular decrease in the semimajor axis of Lageos’s orbit. Celest. Mech. 1982, 26, 361–382. [Google Scholar] [CrossRef]
- Rubincam, D.P. Drag on the Lageos satellite. J. Geophys. Res. 1990, 95, 4881–4886. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Balmino, G. The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Plan. Space Sci. 2006, 54, 581–593. [Google Scholar] [CrossRef]
- R.F. Theory of Satellite Orbits In an Atmosphere. By D. King-Hele, London (Butterworths Mathematical Texts) 1964. Pp. Vii, 165; Figures; Tables 30s. Q. J. R. Meteorol. Soc. 1964, 90, 503–504. [Google Scholar] [CrossRef]
- King-Hele, D. Satellite Orbits in an Atmosphere. Theory and Applications; Blackie Academic & Professional: Luton, UK, 1987. [Google Scholar]
- Milani, A.; Nobili, A.M.; Farinella, P. Non-Gravitational Perturbations and Satellite Geodesy; Adam Hilger: Bristol, UK, 1987. [Google Scholar]
- Iorio, L. On the impact of the atmosheric drag on the LARES mission. Acta Phys. Pol. B 2010, 41, 753–765. [Google Scholar]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Bassan, M.; Magnafico, C.; Peron, R.; Pucacco, G.; Visco, M. The impact of the drag due to the neutral atmosphere on the orbit of LARES. EGU Conf. Geophys. Res. Abstr. 2019, 21, EGU2019-16897. [Google Scholar]
- Rubincam, D.P.; Knocke, P.; Taylor, V.R.; Blackwell, S. Earth anisotropic reflection and the orbit of LAGEOS. J. Geophys. Res. 1987, 92, 11662–11668. [Google Scholar] [CrossRef]
- Rubincam, D.P. LAGEOS orbit decay due to infrared radiation from earth. J. Geophys. Res. 1987, 92, 1287–1294. [Google Scholar] [CrossRef]
- Rubincam, D.P. Yarkovsky thermal drag on LAGEOS. J. Geophys. Res. 1988, 93, 13805–13810. [Google Scholar] [CrossRef]
- Afonso, G.; Barlier, F.; Mignard, F.; Carpino, M.; Farinella, P. Orbital effects of LAGEOS seasons and eclipses. Ann. Geophys. 1989, 7, 501–514. [Google Scholar]
- Farinella, P.; Nobili, A.M.; Barlier, F.; Mignard, F. Effects of thermal thrust on the node and inclination of LAGEOS. Astron. Astrophys. 1990, 234, 546–554. [Google Scholar]
- Scharroo, R.; Wakker, K.F.; Ambrosius, B.A.C.; Noomen, R. On the along-track acceleration of the Lageos satellite. J. Geophys. Res. 1991, 96, 729–740. [Google Scholar] [CrossRef]
- Slabinski, V.J. A Numerical Solution for Lageos Thermal Thrust: The Rapid-Spin Case. Celest. Mech. Dyn. Astron. 1996, 66, 131–179. [Google Scholar] [CrossRef]
- Farinella, P.; Vokrouhlický, D. Thermal force effects on slowly rotating, spherical artificial satellites-I. Solar heating. Plan. Space Sci. 1996, 44, 1551–1561. [Google Scholar] [CrossRef]
- Rubincam, D.P.; Currie, D.G.; Robbins, J.W. LAGEOS I once-per-revolution force due to solar heating. J. Geophys. Res. 1997, 102, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Métris, G.; Vokrouhlický, D.; Ries, J.C.; Eanes, R.J. Nongravitational effects and the LAGEOS eccentricity excitations. J. Geophys. Res. 1997, 102, 2711–2729. [Google Scholar] [CrossRef]
- Métris, G.; Vokrouhlický, D.; Ries, J.C.; Eanes, R.J. LAGEOS Spin Axis and Non-gravitational Excitations of its Orbit. Adv. Space Res. 1999, 23, 721–725. [Google Scholar] [CrossRef]
- Lucchesi, D.M. Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring derivation-Part II. Plan. Space Sci. 2002, 50, 1067–1100. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Ciufolini, I.; Andrés, J.I.; Pavlis, E.C.; Peron, R.; Noomen, R.; Currie, D.G. LAGEOS II perigee rate and eccentricity vector excitations residuals and the Yarkovsky-Schach effect. Plan. Space Sci. 2004, 52, 699–710. [Google Scholar] [CrossRef]
- Ciufolini, I. On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim. A 1996, 109, 1709–1720. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The Lense-Thirring effect derivation and the LAGEOS satellites orbit analysis with the new gravity field solution from CHAMP. In Proceedings of the 35th COSPAR Scientific Assembly COSPAR Meeting, Paris, Frsnce, 18–25 July 2004; Volume 35, p. 232. [Google Scholar]
- Iorio, L.; Morea, A. The Impact of the New Earth Gravity Models on the Measurement of the Lense-Thirring Effect. Gen. Relativ. Gravit. 2004, 36, 1321–1333. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The Lense Thirring effect measurement and LAGEOS satellites orbit analysis with the new gravity field model from the CHAMP mission. Adv. Space Res. 2007, 39, 324–332. [Google Scholar] [CrossRef]
- Ciufolini, I.; Matzner, R. Non-Riemannian Theories of Gravity and Lunar and Satellite Laser Ranging. Int. J. Mod. Phys. A 1992, 7, 843–852. [Google Scholar] [CrossRef]
- Iorio, L.; Ciufolini, I.; Pavlis, E.C. Measuring the relativistic perigee advance with satellite laser ranging. Class. Quantum Grav. 2002, 19, 4301–4309. [Google Scholar] [CrossRef]
- Lucchesi, D.M. LAGEOS II perigee shift and Schwarzschild gravitoelectric field. Phys. Lett. A 2003, 318, 234–240. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The LAGEOS satellites orbit and Yukawa-like interactions. Adv. Space Res. 2011, 47, 1232–1237. [Google Scholar] [CrossRef]
- Reigber, C.; Schmidt, R.; Flechtner, F.; König, R.; Meyer, U.; Neumayer, K.H.; Schwintzer, P.; Zhu, S.Y. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 2005, 39, 1–10. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The asymmetric reflectivity effect on the LAGEOS satellites and the germanium retroreflectors. Geophys. Res. Lett. 2003, 30, 1957. [Google Scholar] [CrossRef]
- Lucchesi, D.M. LAGEOS Satellites Germanium Cube-Corner-Retroreflectors and the Asymmetric Reflectivity Effect. Celest. Mech. Dyn. Astron. 2004, 88, 269–291. [Google Scholar] [CrossRef]
- Combrinck, L. Testing the General Relativity Theory Through the Estimation of PPN Parameters γ and β Using Satellite Laser Ranging Data. S. Afr. J. Geol. 2011, 114, 549–560. [Google Scholar] [CrossRef]
- Soffel, M.; Klioner, S.A.; Petit, G.; Wolf, P.; Kopeikin, S.M.; Bretagnon, P.; Brumberg, V.A.; Capitaine, N.; Damour, T.; Fukushima, T.; et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. Astron. J. 2003, 126, 2687–2706. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions (2010); IERS Technical Note 36, IERS; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Tapley, B.D.; Flechtner, F.; Bettadpur, S.V.; Watkins, M.M. The status and future prospect for GRACE after the first decade. In EOS Transactions AGU, Fall Meeting Supplement, Abstract G22A-01; American Geophysical Union: Washington, DC, USA, 2013. [Google Scholar]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Ray, R.D. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2; Technical Paper NASA/TM-1999-209478; Goddard Space Flight Center: Greenbelt, Maryland, 1999. [Google Scholar]
- Standish, E.M.; Newhall, X.X.; Williams, J.G.; Folkner, W.M. JPL Planetary and Lunar Ephemerides, DE403/LE403; Technical Report JPL IOM 314.10-127; JPL: Pasadena, CA, USA, 1995.
- Huang, C.; Ries, J.C.; Tapley, B.D.; Watkins, M.M. Relativistic effects for near-earth satellite orbit determination. Celest. Mech. Dyn. Astron. 1990, 48, 167–185. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef]
- International Earth Rotation and Reference System Service. EOP Combined Series EOP C04; Technical Report; IERS: Frankfurt am Main, Germany.
- Mathews, P.M.; Herring, T.A.; Buffett, B.A. Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res. 2002, 107, 2068. [Google Scholar] [CrossRef]
- Capitaine, N.; Wallace, P.T.; Chapront, J. Expressions for IAU 2000 precession quantities. Astron. Astrophys. 2003, 412, 567–586. [Google Scholar] [CrossRef]
- Yilmaz, H. Proposed Test of the Nature of Gravitational Interaction. Bull. Am. Phys. Soc. 1959, 4, 65. [Google Scholar]
- Van Patten, R.A.; Everitt, C.W.F. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett. 1976, 36, 629–632. [Google Scholar] [CrossRef]
- Cugusi, L.; Proverbio, E. Relativistic Effects on the Motion of Earth’s Artificial Satellites. Astron. Astrophys. 1978, 69, 321–325. [Google Scholar]
- Ciufolini, I. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 1986, 56, 278–281. [Google Scholar] [CrossRef]
- Tapley, B.D.; Ries, J.C.; Eanes, R.J.; Watkins, M.M. Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite; Technical Report CSR-89-3, CSR-UT; Center for Space Research, University of Texas: Austin, TX, USA, 1989. [Google Scholar]
- Everitt, C.W.F.; Debra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; Muhlfelder, B.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Silbergleit, A.S.; Acworth, E.B.; Adams, M.; Adler, R.; Bencze, W.J.; et al. The Gravity Probe B test of general relativity. Class. Quantum Gravity 2015, 32, 224001. [Google Scholar] [CrossRef] [Green Version]
- Schiff, L.I. Possible New Experimental Test of General Relativity Theory. Phys. Rev. Lett. 1960, 4, 215–217. [Google Scholar] [CrossRef]
- Schiff, L.I. Motion of a Gyroscope According to Einstein’s Theory of Gravitation. Proc. Natl. Acad. Sci. USA 1960, 46, 871–882. [Google Scholar] [CrossRef] [PubMed]
- de Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc. 1916, 77, 155–184. [Google Scholar] [CrossRef]
- Kozai, Y. The motion of a close earth satellite. Astron. J. 1959, 64, 367. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. SatelliteOrbits—Models, Methods and Application; Springer: Berlin, Germany, 2005. [Google Scholar]
- Tapley, B.; Schutz, B.; Born, G. Statistical Orbit Determination; Elsevier Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Iorio, L. The Impact of the Static Part of the Earth’s Gravity Field on Some Tests of General Relativity with Satellite Laser Ranging. Celest. Mech. Dyn. Astron. 2003, 86, 277–294. [Google Scholar] [CrossRef]
- Iorio, L. The impact of the new Earth gravity models on the measurement of the Lense Thirring effect with a new satellite. New Astron. 2005, 10, 616–635. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The Impact of the Even Zonal Harmonics Secular Variations on the Lense-Thirring Effect Measurement with the Two LAGEOS Satellites. Int. J. Mod. Phys. D 2005, 14, 1989–2023. [Google Scholar] [CrossRef]
- Iorio, L. A comment on A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, by I. Ciufolini et al. Eur. Phys. J. C 2017, 77, 73. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.C.; Ries, J.; Matzner, R.; Koenig, R.; Paolozzi, A.; Sindoni, G.; Gurzadyan, V.; Penrose, R.; Paris, C. Reply to A comment on A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, by I. Ciufolini et al. Eur. Phys. J. C 2018, 78, 880. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, G. Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? Can. J. Phys. 2012, 90, 883–888. [Google Scholar] [CrossRef]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sindoni, G.; Koenig, R.; Ries, J.C.; Matzner, R.; Gurzadyan, V.; Penrose, R.; Rubincam, D.; et al. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur. Phys. J. Plus 2017, 132, 336. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.C.; Sindoni, G.; Ries, J.C.; Paolozzi, A.; Matzner, R.; Koenig, R.; Paris, C. A new laser-ranged satellite for General Relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur. Phys. J. Plus 2017, 132, 337. [Google Scholar] [CrossRef]
- Iorio, L. The impact of the orbital decay of the LAGEOS satellites on the frame-dragging tests. Adv. Space Res. 2016, 57, 493–498. [Google Scholar] [CrossRef]
- Lucchesi, D. Effets the Forces Non-Gravitationnelles sur les Satellites LAGEOS: Impact sur la Determination de l’Effet Lense–Thirring. Ph.D. Thesis, Nice-Sophia-Antipolis University, Nice, France, 2001. [Google Scholar]
- Iorio, L.; Lucchesi, D.M.; Ciufolini, I. The LARES mission revisited: An alternative scenario. Class. Quantum Gravity 2002, 19, 4311–4325. [Google Scholar] [CrossRef]
- Cheng, M.K.; Shum, C.K.; Tapley, B.D. Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J. Geophys. Res. 1997, 102, 22377. [Google Scholar] [CrossRef]
- Cox, C.M.; Chao, B.F. Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998. Science 2002, 297, 831–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Ries, J.C. Decadal variation in Earth’s oblateness (J2) from satellite laser ranging data. Geophys. J. Int. 2018, 212, 1218–1224. [Google Scholar] [CrossRef]
- Iorio, L. Earth Tides and Lense Thirring Effect. Celest. Mech. Dyn. Astron. 2001, 79, 201–230. [Google Scholar] [CrossRef]
- Pucacco, G.; Lucchesi, D.M. Tidal effects on the LAGEOS-LARES satellites and the LARASE program. Celest. Mech. Dyn. Astron. 2018, 130, 66. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. The key role of the Earth’s gravitational field models in Fundamental Physics measurements with laser-ranged satellites. EGU Conf. Geophys. Res. Abstr. 2019, 21, EGU2019-10721. [Google Scholar]
- Pucacco, G.; Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Stanga, R.; Visco, M. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program. EGU Conf. Geophys. Res. Abstr. 2017, 19, EGU2017-13554. [Google Scholar]
- Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. Phenomenology of the Lense-Thirring effect in the solar system. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef]
- Iorio, L. Analytically calculated post-Keplerian range and range-rate perturbations: The solar Lense-Thirring effect and BepiColombo. Mon. Not. R. Astron. Soc. 2018, 476, 1811–1825. [Google Scholar] [CrossRef]
- Rubincam, D.P. General relativity and satellite orbits - The motion of a test particle in the Schwarzschild metric. Celest. Mech. 1977, 15, 21–33. [Google Scholar] [CrossRef]
- Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H. Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 1986, 56, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Nordtvedt, K. Improving gravity theory tests with solar system “grand fits”. Phys. Rev. D 2000, 61, 122001. [Google Scholar] [CrossRef]
- Damour, T.; Piazza, F.; Veneziano, G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 2002, 66, 046007. [Google Scholar] [CrossRef]
- Moffat, J.W. New theory of gravitation. Phys. Rev. D 1979, 19, 3554–3558. [Google Scholar] [CrossRef]
- Moffat, J.W.; Woolgar, E. Motion of massive bodies: Testing the nonsymmetric gravitation theory. Phys. Rev. D 1988, 37, 918–930. [Google Scholar] [CrossRef]
- Mao, Y.; Tegmark, M.; Guth, A.H.; Cabi, S. Constraining torsion with Gravity Probe B. Phys. Rev. D 2007, 76, 104029. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhao, H. Constraint on Intermediate-Range Gravity from Earth-Satellite and Lunar Orbiter Measurements, and Lunar Laser Ranging. Int. J. Mod. Phys. D 2005, 14, 1657–1666. [Google Scholar] [CrossRef]
- March, R.; Bellettini, G.; Tauraso, R.; Dell’Agnello, S. Constraining spacetime torsion with the Moon and Mercury. Phys. Rev. D 2011, 83, 104008. [Google Scholar] [CrossRef]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hammond, R.T. Torsion gravity. Rep. Prog. Phys. 2002, 65, 599–649. [Google Scholar] [CrossRef]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Der Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef]
- Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe 2015, 1, 38–81. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Matzner, R. Modelling LARES temperature distribution and thermal drag. Eur. Phys. J. Plus 2015, 130, 206. [Google Scholar] [CrossRef]
- Brooks, J.W.; Matzner, R. Modelling LARES temperature distribution and thermal drag II: Numerical computation of current-epoch thermal forces. Eur. Phys. J. Plus 2016, 131, 222. [Google Scholar] [CrossRef]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in Lunar Laser Ranging Tests of Relativistic Gravity. Phys. Rev. Lett. 2004, 93, 261101. [Google Scholar] [CrossRef] [Green Version]
1 | See the ILRS site https://ilrs.cddis.eosdis.nasa.gov/ for further information. |
2 | The daily values of the observed solar flux can be found at the following address https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton_observed/tables/ of the NOAA’s National Centers for Environmental Information. |
3 | Empirical accelerations are kinematic terms introduced to absorb unmodeled effects. |
4 | It is worth of mention to underline that in GEODYN the asymmetric reflectivity effect is not included in the dynamical model, while the models for the thermal thrust effects are obsolete. |
5 | This is known as the Herstmonceux Algorithm for the normal point formation. See https://ilrs.cddis.eosdis.nasa.gov/data_and_products/data/npt/npt_algorithm.html for further details. |
6 | In these particular analyses, we used the EIGEN-GRACE02S model for the gravitational field of the Earth, an arc length of 7 days and all tracking stations have been weighted equally. Usually, the radiation coefficient of the satellites is estimated along with the empirical accelerations. |
7 | More generally, , where are the coefficients of the expansion that depend from the orbital elements. |
8 | |
9 | That starts after the launch of the LARES satellite and, consequently, involves only a part (the last few years) of the GRACE data. |
10 | We considered the monthly solutions for these coefficients provided by CSR, GFZ, and JPL. See the International Centre for Global Earth Models (ICGEM): Gravity Field Solutions for dedicated Time Periods: Release 05, http://icgem.gfz-potsdam.de/series (2018). |
11 | A needed improvement for the upcoming future will consist in providing more accurate values for other even zonal harmonics, fitting the available time series. |
12 | As we stressed in Section 2, the thermal models in GEODYN are not up-to-date. |
13 | Actually, for the published GGM05S model, it is explicitly written that the value for the quadrupole coefficient has been replaced with a value derived from satellite laser ranging. However, as described above, in our analysis we replaced this constant value with a linear trend that fits data from the GRACE mission, and with no contribution from the two LAGEOS or other SLR satellites. |
14 | As shown in Section 2.4, a goal of our project is to improve the modelling of such subtle perturbations to perform both more reliable PODs and non-linear fits of the satellites residuals. |
15 | The accuracy of a linear fit increases if the time interval covered by the measurement includes integer numbers of full cycles of the unmodelled periodic effects. |
16 | We are also extending these analyses to the other coefficients (the non zonal ones) of the Earth’s gravitational field. |
17 | |
18 | |
19 | The interested reader can refer to the cited literature for details. |
20 | As mentioned in Section 4, work is in progress to deliver a more accurate result with a detailed estimate of the systematic errors. |
21 | This is possible, in principle, if the metric tensor of GR is not the only field involved in the description of the gravitational interaction, but other fields (either scalar, vector, or tensor) are present [135]. |
22 | This represents a generalization of Einstein’s GR when a Riemann-Cartan spacetime is considered. |
Satellite | Moments of Inertia (kg m) | ||
---|---|---|---|
LAGEOS | |||
LAGEOS II | |||
LARES |
Model For | Model Type | Reference |
---|---|---|
Geopotential (static) | EIGEN-GRACE02S/GGM05S | [84,90,91] |
Geopotential (time-varying, tides) | Ray GOT99.2 | [92] |
Geopotential (time-varying, non tidal) | IERS Conventions 2010 | [89] |
Third–body | JPL DE-403 | [93] |
Relativistic corrections | Parameterized post-Newtonian | [88,94] |
Direct solar radiation pressure | Cannonball | [46] |
Earth albedo | Knocke-Rubincam | [63] |
Earth-Yarkovsky | Rubincam | [56,64,65] |
Neutral drag | JR-71/MSIS-86 | [50,51] |
Spin | LASSOS | [42] |
Stations position | ITRF2008 | [95] |
Ocean loading | Schernek and GOT99.2 tides | [46,92] |
Earth Rotation Parameters | IERS EOP C04 | [96] |
Nutation | IAU 2000 | [97] |
Precession | IAU 2000 | [98] |
Unit | Symbol | LAGEOS | LAGEOS II | LARES | |
---|---|---|---|---|---|
Semi-major axis | [km] | a | 12 270.00 | 12 162.07 | 7 820.31 |
Eccentricity | e | 0.004433 | 0.013798 | 0.001196 | |
Inclination | [deg] | i | 109.84 | 52.66 | 69.49 |
With EA (0001) | Without EA (0002) | |||||||
---|---|---|---|---|---|---|---|---|
Residuals [cm] | RMS [cm] | Residuals [cm] | RMS [cm] | |||||
M | M | M | M | |||||
LAGEOS | 6.13 | 1.58 | 0.56 | 15.25 | 39.09 | 4.40 | 1.87 | |
LAGEOS II | 3.50 | 1.48 | 0.39 | 21.77 | 46.09 | 4.44 | 1.71 | |
LARES | 0.30 | 4.31 | 3.32 | 0.57 | 90.67 | 148.10 | 22.63 | 9.47 |
Orbital Element | LAGEOS | LAGEOS II | LARES |
---|---|---|---|
30.67 | 31.50 | 118.48 |
LAGEOS | LAGEOS II | LARES | |
---|---|---|---|
Thermal effects | Period [days] | Period [days] | Period [days] |
1052 | 570 | 211 | |
526 | 285 | 105 | |
365 | 365 | 365 | |
183 | 183 | 183 | |
280 | 111 | 67 | |
271 | 953 | 497 | |
Solid tide 165.565 | 911 | 622 | 217 |
Ocean tide 163.555 | 221 | 138 | 98 |
+1.000 | +0.354 | ||
+0.354 | +1.000 | ||
+1.000 |
Lense-Thirring Precession | Schwarzschild Precession | ||||||||
---|---|---|---|---|---|---|---|---|---|
Year | Model | Ref. | Year | Ref. | |||||
(1) | 1998 | EGM96 | [18] | 2010 | [21] | ||||
(2) | 2004 | EIGEN-GRACE02S | [19] | 2014 | [22] | ||||
(3) | 2004 | EIGEN2S | [77,79] | ||||||
(4) | 2016 | GGM05S | [23] | ||||||
(5) | 2017 | GGM05S | [24] | ||||||
(6) | 2019 | GGM05S | This paper |
Parameter | Values or Uncertainties | Previous Values or Uncertainties |
---|---|---|
; | ||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe 2019, 5, 141. https://doi.org/10.3390/universe5060141
Lucchesi DM, Anselmo L, Bassan M, Magnafico C, Pardini C, Peron R, Pucacco G, Visco M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe. 2019; 5(6):141. https://doi.org/10.3390/universe5060141
Chicago/Turabian StyleLucchesi, David M., Luciano Anselmo, Massimo Bassan, Carmelo Magnafico, Carmen Pardini, Roberto Peron, Giuseppe Pucacco, and Massimo Visco. 2019. "General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives" Universe 5, no. 6: 141. https://doi.org/10.3390/universe5060141
APA StyleLucchesi, D. M., Anselmo, L., Bassan, M., Magnafico, C., Pardini, C., Peron, R., Pucacco, G., & Visco, M. (2019). General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe, 5(6), 141. https://doi.org/10.3390/universe5060141