Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome
Abstract
:1. Introduction
2. Vorticity, Gravitational Radiation and Super–Poynting Vector
2.1. Gravitational Radiation in An Asymptotically Flat Vacuum Space–Time: The Bondi Approach
- If and N are known on some null hypersurface and (the news function) is known for all u in the interval , then the system is fully determined in that interval. This implies that whatever happens at the source, leading to changes in the field, it can only do so by affecting and viceversa. This result establishes in an unmistakable way the relationship between news function and the occurrence of radiation.
- As it follows from (8), the mass of a system is constant if and only if there are no news.
2.2. Gravitational Radiation within the Source
- The gravitational radiation being a dissipative process, we should expect that an entropy generator factor be present in the source of radiation. This has been discussed with some detail in Reference [27].
- As a consequence of the previous point, the exterior of a gravitationally radiating source is necessarily filled with a null fluid, produced by the dissipative processes inherent to the emission of gravitational radiation. In other words the assumption of vacuum in the Bondi approach has to be regarded as an approximation, see Reference [28] for a discussion on this issue.
- It is important to keep in mind the difference between the steady vorticity of the stationary case (e.g., the one of the Kerr metric) and the vorticity considered here. In the former case there is no gravitational radiation, although the vorticity is also related to a flux of super–energy on the plane orthogonal to the vorticity vector (see Reference [29] for details).
- It is important to stress that we are dealing here, exclusively, with sources of gravitational radiation represented by a fluid distribution. In other words the emission of gravitational radiation is entirely due to changes in their relativistic multipole moments. Accordingly, we are excluding gravitational radiation of the “synchrotron” type produced by accelerated massive particles or the two body problem.
3. Discussion
Funding
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.; Hernández-Pastora, J.L. On the influence of gravitational radiation on a gyroscope. Class. Quantum Grav. 2000, 17, 3617–3625. [Google Scholar] [CrossRef] [Green Version]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity VII. Waves from axi–symmetric isolated systems. Proc. Roy. Soc. A 1962, 269, 21–52. [Google Scholar]
- Sachs, R. Gravitational waves in general relativity VIII. Waves in asymptotically flat space–time. Proc. Roy. Soc. A 1962, 270, 103–125. [Google Scholar]
- Sorge, F.; Bini, D.; de Felice, F. Gravitational waves, gyroscopes and frame dragging. Class. Quantum Grav. 2001, 18, 2945–2958. [Google Scholar] [CrossRef]
- Valiente, J. Can one detect a non–smooth null infinity? Class. Quantum Grav. 2001, 18, 4311–4316. [Google Scholar]
- Herrera, L.; Santos, N.O.; Carot, J. Gravitational radiation, vorticity and the electric and magnetic part of Weyl tensor. J. Math. Phys 2006, 47, 052502. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Barreto, W.; Carot, J.; di Prisco, A. Why does gravitational radiation produces vorticity? Class. Quantum Grav. 2007, 24, 2645–2651. [Google Scholar] [CrossRef]
- Bicak, J.; Katz, J.; Lynden–Bell, D. Gravitational waves and dragging effects. Class. Quantum Grav. 2008, 25, 165017. [Google Scholar] [CrossRef]
- Herrera, L. Radiation and vorticity: The missing link. Gen. Relativ. Gravit. 2014, 46, 1654–1657. [Google Scholar] [CrossRef]
- Bini, A.D. Geralico and W. Plastino. Cylindrical gravitational waves: C–energy, super-energy and associated dynamical effects. Class. Quantum Grav. 2019, 36, 095012. [Google Scholar] [CrossRef]
- Bonnor, W.B. Dragging of inertial frames by a charged magnetic dipole. Phys. Lett. A 1991, 158, 23–26. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sand, M. Lectures on Physics II; Addison–Wesley: Reading, PA, USA, 1964; pp. 27–28. [Google Scholar]
- Herrera, L.; González, G.A.; Pachón, L.A.; Rueda, J.A. Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes. Class. Quantum Grav. 2006, 23, 2395–2408. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, I.I.; Reasenberg, R.D.; Chandler, J.F.; Babcock, R.W. Measurement of the de Sitter precession of the Moon: A relativistic three-body effect. Phys. Rev. Lett. 1988, 61, 2643. [Google Scholar] [CrossRef]
- Rindler, W.; Perlick, V. Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. Gen. Rel. Grav. 1990, 22, 1067–1081. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef] [PubMed]
- Ciufolini, I.; Pavlis, E. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Bel, L. Sur la radiation gravitationelle. C. R. Acad. Sci. 1958, 247, 1094–1096. [Google Scholar]
- Bel, L. Radiation states and the problem of energy in general relativity. Gen. Rel. Grav. 2000, 32, 2047–2078. [Google Scholar] [CrossRef]
- Bel, L. Introduction d’un tenseur du quatrieme order. C. R. Acad. Sci. Paris 1959, 248, 1297–1300. [Google Scholar]
- Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J. Dissipative collapse of axially symmetric, general relativistic, sources: A general framework and some applications. Phys. Rev. D 2014, 89, 084034. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Relativistic Cosmology. In Proceedings of the International School of Physics “Enrico Fermi”, Course 47: General Relativity and Cosmology; Sachs, R.K., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Ellis, G.F.R.; van Elst, H. Cosmological models (Cargese lectures 1998). arXiv 1998, arXiv:gr-qc/9812046. [Google Scholar]
- Ellis, G.F.R. Republication of: Relativistic cosmology. Gen. Rel. Grav. 2009, 41, 581–660. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Maartens, R.; MacCallum, M.A.H. Relativistic Cosmology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J. Shearing and geodesic axially symmetric perfect fluids that do not produce gravitational radiation. Phys. Rev. D 2015, 91, 024010. [Google Scholar] [CrossRef]
- Herrera, L.; di Prisco, A.; Ospino, J. The spacetime outside a source of gravitational radiation: The axially symmetric null fluid. Eur. Phys. J. C 2016, 94, 603–609. [Google Scholar] [CrossRef]
- Herrera, L.; di Prisco, A.; Carot, J. Frame dragging and super–energy. Phys. Rev. D 2007, 76, 044012. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S.; Haugan, M.P. Proposed optical test of metric gravitation theories. Phys. Rev. A 1981, 24, 2009. [Google Scholar] [CrossRef]
- Lenef, A.; Hammond, T.D.; Smith, E.T.; Chapman, M.S.; Rubenstein, R.A.; Pritchard, D.E. Rotation Sensing with an Atom Interferometer. Phys. Rev. Lett. 1997, 78, 760. [Google Scholar] [CrossRef]
- Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision Rotation Measurements with an Atom Interferometer Gyroscope. Phys. Rev. Lett. 1997, 78, 2046. [Google Scholar] [CrossRef]
- Stedman, G.E.; Schreiber, K.U.; Bilger, H.R. On the detectability of the Lense–Thirring field from rotating laboratory masses using ring laser gyroscope interferometers. Class. Quantum Grav. 2003, 20, 2527–2540. [Google Scholar] [CrossRef]
- Stedman, G.E.; Hurst, R.B.; Schreiber, K.U. On the potential of large ring lasers. Opt. Commun. 2007, 279, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Di Virgilio, A.; Schreiber, K.U.; Gebauer, A.; Wells, J.-P.R.; Tartaglia, A.; Belfi, J.; Beverini, N.; Ortolan, A. A laser gyroscope system to detect the gravitomagnetic effect on earth. Int. J. Mod. Phys. D 2010, 19, 2331–2343. [Google Scholar] [CrossRef]
- Bosi, F.; Cella, G.; di Virgilio, A.; Ortolan, A.; Porzic, A.; Solimenof, S.; Cerdonio, M.; Zendri, J.P.; Allegrini, M.; Bel, J.; et al. Measuring gravito-magnetic efects by multiring–laser gyroscope. Phys. Rev. D 2011, 84, 122002. [Google Scholar] [CrossRef]
- Robins, N.P.; Altin, P.A.; Debs, J.E.; Close, J.D. Atom lasers: Production, properties and prospects for precision inertial measurement. arXiv 2012, arXiv:1209.2172v1. [Google Scholar] [CrossRef]
- Campbell, W.C.; Hamilton, P. Rotation sensing with trapped ions. arXiv 2016, arXiv:1609.00659v1. [Google Scholar] [CrossRef]
- Tartaglia, A.; di Virgilio, A.; Belf, J.; Beverini, N.; Ruggiero, M.L. Testing general relativity by means of ringlasers. Eur. Phys. J. Plus 2016, 132, 73. [Google Scholar] [CrossRef]
- di Virgilio, A.; Beverini, N.; Carelli, G.; Ciampini, D.; Fuso, F.; Maccioni, E. Analysis of ring lasers gyroscopes including laser dynamics. arXiv 2019, arXiv:1904.02533v1. [Google Scholar]
- Bonder, Y.; Herrera–Flores, J.E. Measuring Relativistic Dragging with Quantum Interference. arXiv 2019, arXiv:1905.02275v1. [Google Scholar]
- Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J. Earliest stages of the nonequilibrium in axially symmetric, self–gravitating, dissipative fluids. Phys. Rev. D 2016, 94, 064072. [Google Scholar] [CrossRef]
- DeWitt, B.S.; Brehme, R. Radiation damping in a gravitational field. Ann. Phys. 1960, 9, 220–259. [Google Scholar] [CrossRef]
- Kundt, W.; Newman, E.T. Hyperbolic Differential Equations in Two Dimensions. J. Math. Phys. 1968, 9, 2193–2210. [Google Scholar] [CrossRef]
- Bonnor, W.B. Approximate methods and gravitational radiation. In Proceedings of the Meeting on General Relativity; Barbera, G., Ed.; Comitato Nazionale per le Manifestazione Celebrative: Florence, Italy, 1965; pp. 119–142. [Google Scholar]
- Couch, W.; Torrence, R.; Janis, A.; Newman, E.T. Tail of a Gravitational Wave. J. Math. Phys. 1968, 9, 484. [Google Scholar] [CrossRef]
- Bonnor, W.B. Gravitational wave tails. In Gravitational Waves and Radiations, Proceedings of the International Conference, Paris, France, 18–22 June 1973; Transactions. (A75-26747 11-90); Centre National de la Recherche Scientifique: Paris, France, 1974; pp. 73–81. [Google Scholar]
- Blanchet, L.; Shafer, G. Gravitational wave tails and binary star systems. Class. Quantum Grav. 1993, 10, 2699–2722. [Google Scholar] [CrossRef]
- Marchand, T.; Blanchet, L.; Faye, G. Gravitational-wave tail effects to quartic non-linear order. Class. Quantum Grav. 2016, 33, 244003. [Google Scholar] [CrossRef]
- Herrera, L.; di Prisco, A.; Ospino, J. The transition of a gravitationally radiating, dissipative fluid, to equilibrium. Can. J. Phys. 2018, 96, 1010–1015. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L. Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome. Universe 2019, 5, 164. https://doi.org/10.3390/universe5070164
Herrera L. Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome. Universe. 2019; 5(7):164. https://doi.org/10.3390/universe5070164
Chicago/Turabian StyleHerrera, Luis. 2019. "Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome" Universe 5, no. 7: 164. https://doi.org/10.3390/universe5070164
APA StyleHerrera, L. (2019). Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome. Universe, 5(7), 164. https://doi.org/10.3390/universe5070164