Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review
Abstract
:1. Introduction
2. Experimental Data
3. Data Analysis
3.1. Ca
3.2. Ge
3.3. Se
3.4. Zr
3.5. Mo
3.6. Mo - Ru (; 1130.32 Kev)
3.7. Cd
3.8. Te and Te
3.9. Xe
3.10. Nd
3.11. Nd - Sm (; 740.4 Kev)
3.12. U
3.13. Ba (ECEC)
3.14. Kr (2K)
3.15. Xe (2k)
4. NME Values for Two-Neutrino Double Beta Decay
5. Conclusions
Funding
Conflicts of Interest
References
- Goeppetr-Mayer, M. Double beta-disintegration. Phys. Rev. 1935, 48, 512–516. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Brudanin, V.; Caffrey, A.J.; Caurier, E.; Egorov, V.; Errahmane, K.; Etienvre, A.I.; et al. Limits on different Majoron decay modes of 100Mo and 82Se for neutrinoless double beta decays in the NEMO-3 experiment. Nucl. Phys. A 2006, 765, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Detailed studies of 100Mo two-neutrino double beta decay in NEMO-3. Eur. Phys. J. C 2019, 79, 440. [Google Scholar]
- Barabash, A.S.; Dolgov, A.D.; Dvornicky, R.; Simkovic, F.; Smirnov, A.Y. Statistics of neutrinos and the double beta decay. Nucl. Phys. B 2007, 783, 90–111. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Barbeau, P.S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G.F.; Chambers, C.; Cleveland, B.; et al. First search for Lorentz and CPT violation in double beta decay with EXO-200. Phys. Rev. D 2016, 93, 072001. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First search for Lorentz violation in double beta decay with scintillating calorimeters. Phys. Rev. D 2019, 100, 092002. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Graf, L.; Simkovic, F. Searching for New Physics in two-neutrino double beta decay. arXiv 2020, arXiv:2003.11836. [Google Scholar]
- Deppisch, F.F.; Graf, L.; Rodejohann, W.; Xu, X.-J. Neutrino self-interactions and double beta decay. arXiv 2020, arXiv:2004.11919. [Google Scholar] [CrossRef]
- Inghram, M.G.; Reynolds, J.H. Double beta-decay of 130Te. Phys. Rev. 1950, 78, 822. [Google Scholar] [CrossRef]
- Elliott, S.R.; Hahn, A.A.; Moe, M.K. Direct evidence for two-neutrino double-beta decay in 82Se. Phys. Rev. Lett. 1987, 59, 2020–2023. [Google Scholar] [CrossRef]
- Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. Weak decay of 130Ba and 132Ba: Geochemical measurements. Phys. Rev. C 2001, 64, 035205. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Antochi, V.C.; Arneodo, F.; Baudis, L.; et al. Observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature 2019, 568, 532–535. [Google Scholar]
- Ratkevich, S.S.; Gangapshev, A.M.; Gavrilyuk, Y.M.; Karpeshin, F.F.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Trzhaskovskaya, M.B.; Yakimenko, S.P. Comparative study of the double-K-shell-vacancy production in single- and double-electron-capture decay. Phys. Rev. C 2017, 96, 065502. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Precise half-life values for two-neutrino double-β decay. Phys. Rev. C 2010, 81, 035501. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double beta decay. Nucl. Phys. A 2015, 935, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Simkovoc, F.; Dvornicky, R.; Stefanik, D.; Faessler, A. Improved description of the 2νββ-decay and a possibility to determine the effective axial-vector coupling constant. Phys. Rev. C 2018, 97, 034315. [Google Scholar] [CrossRef] [Green Version]
- Rodin, V.A.; Faessler, A.; Simkovic, F.; Vogel, P. Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements. Nucl. Phys. A 2006, 766, 107–131, Erratum 2007, 793, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Kortelainen, M.; Suhonen, J. Nuclear matrix elements of 0νββ decay with improved short-range correlations. Phys. Rev. C 2007, 76, 024315. [Google Scholar] [CrossRef] [Green Version]
- Simkovic, F.; Faessler, A.; Rodin, V.; Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503. [Google Scholar] [CrossRef] [Green Version]
- Beringer, J.; Agruin, J.-F.; Barnett, R.M.; Copic, K.; Dahl, O.; Groom, D.E.; Lin, C.-J.; Lys, J.; Murayama, H.; Wohl, C.G.; et al. Particle Data Group. Phys. Rev. D 2012, 86, 010001. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Menendez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- Suhonen, J. Impact of the quenching of gA on the sensitivity of 0νββ experiments. Phys. Rev. C 2017, 96, 055501. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.; Kostensalo, J. Double β becay and the axial strength. Front. Phys. 2019, 7, 00029. [Google Scholar] [CrossRef]
- Kotila, J.; Iachello, F. Phase-space factors for double-β decay. Phys. Rev. C 2012, 85, 034316. [Google Scholar] [CrossRef] [Green Version]
- Mirea, M.; Pahomi, T.; Stoica, S. Values of the phase space factor involved in double beta decay. Rom. Rep. Phys. 2015, 67, 872–889. [Google Scholar]
- Barabash, A.S. Average (recommended) half-life values for two-neutrino double-beta decay. Czech. J. Phys. 2002, 52, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double-beta decay: Upgrade’05. Czech. J. Phys. 2006, 56, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double beta decay: Upgrade-2019. AIP Conf. Proc. 2019, 2165, 020002. [Google Scholar]
- Arnold, R.; Augier, C.; Bakalyarov, A.M.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; et al. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector. Phys. Rev. D 2016, 93, 112008. [Google Scholar]
- Agostini, M.; Allardt, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; et al. Results on ββ decay with emission of two neutrinos or Majorons in 76Ge from GERDA Phase I. Eur. Phys. J. C 2015, 75, 416. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Final results on 82Se double beta decay to the ground state of 82Kr from the NEMO-3 experiment. Eur. Phys. J. C 2018, 78, 821. [Google Scholar]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Evidence of single state dominance in the two-neutrino double-β decay of 82Se with CUPID-0. Phys. Rev. Lett. 2019, 123, 262501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Berge, L.; Billard, J.; Borovlev, Y.A.; et al. Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 2020, 80, 674. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. Phys. Rev. D 2017, 95, 012007. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone III, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Bersan, A.; et al. Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-0 experiment. Eur. Phys. J. C 2017, 77, 13. [Google Scholar] [CrossRef] [Green Version]
- Nutini, I.; Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone III, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; et al. The Cuore detector and results. J. Low Temp. Phys. 2020, 199, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Hachiya, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.D.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef] [Green Version]
- Kasperovych, D.V.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.T.; Di Marco, A.; et al. Study of double-β decay of 150Nd to the first 0+ excited level of 150Sm. AIP Conf. Proc. 2019, 2165, 020014. [Google Scholar]
- Meshik, A.; Pravdivtseva, O. Weak decay of tellurium and barium isotopes in geological samples: Current status. JPS Conf. Ser. 2017, 14, 020702. [Google Scholar]
- Balysh, A.; De Silva, A.; Lebedev, V.I.; Lou, K.; Moe, M.K.; Nelson, M.A.; Piepke, A.; Pronskiy, A.; Vient, M.A.; Vogel, P.; et al. Double beta decay of 48Ca. Phys. Rev. Lett. 1996, 77, 5186–5189. [Google Scholar] [CrossRef] [Green Version]
- Brudanin, V.B.; Rukhadze, N.I.; Briançon, C.; Egorov, V.G.; Kovalenko, V.E.; Kovalik, A.; Salamatin, A.V.; Stekl, I.; Tsoupko-Sitnikov, V.V.; Vylov, T.; et al. Search for double beta decay of 48Ca in the TGV experiment. Phys. Lett. B 2000, 495, 63–68. [Google Scholar] [CrossRef]
- Vasenko, A.A.; Kirpichnikov, V.; Kuznetsov, V.A.; Starostin, A.S.; Djanyan, A.G.; Pogosov, V.S.; Shachysisyan, S.P.; Tamanyan, A.G. New results in the ITEP/YePI double beta decay experiment with enriched germanium detector. Mod. Phys. Lett. A 1990, 5, 1299–1306. [Google Scholar] [CrossRef]
- Miley, H.S.; Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; Reeves, J.H. Suggestive evidence for the two-neutrino double-β decay of 76Ge. Phys. Rev. Lett. 1990, 65, 3092–3095. [Google Scholar] [CrossRef]
- Avignone III, F.T.; Brodzinski, R.L.; Guerard, C.K.; Kirpichnikov, I.V.; Miley, H.S.; Pogosov, V.S.; Reeves, J.H.; Starostin, A.S.; Tamanyan, A.G. Confirmation of the observation of 2νββ decay of 76Ge. Phys. Lett. B 1991, 256, 559–561. [Google Scholar] [CrossRef]
- Avignone, F.T. Double-beta decay: Some recent results and developments. Prog. Part. Nucl. Phys. 1994, 32, 223–245. [Google Scholar] [CrossRef]
- Morales, A. Review on double beta decay experiments and comparison with theory. Nucl. Phys. B 1999, 77, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Dorr, C.; Klapdor-Kleingrothaus, H.V. New Monte-Carlo simulation of the HEIDELBERG-MOSCOW double beta decay experiment. Nucl. Instr. Methods A 2003, 513, 596–621. [Google Scholar] [CrossRef]
- Elliott, S.R.; Hahn, A.A.; Moe, M.K.; Nelson, M.A.; Vient, M.A. Double beta decay of 82Se. Phys. Rev. C 1992, 46, 1535–1537. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Blum, D.; Brudanin, V.; Caffrey, A.J.; Campagne, J.E.; Caurier, E.; Dassie, D.; et al. Double-β decay of 82Se. Nucl. Phys. A 1998, 636, 209–223. [Google Scholar]
- Kirsten, T.; Heusser, E.; Kather, D.; Ohm, J.; Pernicka, E.; Richter, H. New Geochemical Double Beta Decay Measurements on Various Selenium Ores and Remarks Concerning Tellurium Isotopes; World Scientific: Singapore, 1986; pp. 81–92. [Google Scholar]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.; Blum, D.; Brudanin, V.; Caffrey, A.J.; Campagne, J.E.; Caurier, E.; Dassie, D.; et al. Double beta decay of 96Zr. Nucl. Phys. A 1999, 658, 299–312. [Google Scholar] [CrossRef]
- Argyriades, J.; Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Broudin-Bay, G.; Brudanin, V.; Caffrey, A.J.; et al. Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A 2010, 847, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, A.; Takahashi, K.; Masuda, A. Geochemical estimation of the half-life for the double beta decay of 96Zr. Phys. Rev. C 1993, 47, R2452–R2456. [Google Scholar] [CrossRef] [PubMed]
- Wieser, M.E.; De Laeter, J.R. Evidence of the double β decay of zirconium-96 measured in 1.8 × 109 year-old zircons. Phys. Rev. C 2001, 64, 024308. [Google Scholar] [CrossRef]
- Ejiri, H.; Fushimi, K.; Kamada, T.; Kinoshita, H.; Yamamoto, N. Double beta decays of Mo-100. Phys. Lett. B 1991, 258, 17–23. [Google Scholar]
- Elliott, S.R.; Moe, M.K.; Nelson, M.A.; Vient, M.A. The double beta decay spectrum of 100Mo as measured with a TPC. J. Phys. G 1991, 17, S145–S153. [Google Scholar] [CrossRef]
- Dassie, D.; Eschbach, R.; Hubert, F.; Hubert, P.; Isaac, M.C.; Izac, C.; Leccia, F.; Mennrath, P.; Vareille, A.; Longuemare, C.; et al. Two-neutrino double-β decay measurement of 100Mo. Phys. Rev. D 1995, 51, 2090–2100. [Google Scholar] [CrossRef]
- Alston-Garnjost, M.; Dougherty, B.L.; Kenney, R.W.; Tripp, R.D.; Krivicich, J.M.; Nicholson, H.W.; Sutton, C.S.; Dieterle, B.D.; Foltz, S.D.; Leavitt, C.P.; et al. Experimental search for double-β decay of 100Mo. Phys. Rev. C 1997, 55, 474–493. [Google Scholar] [CrossRef]
- De Silva, A.; Moe, M.K.; Nelson, M.A.; Vient, M.A. Double β decays of 100Mo and 150Nd. Phys. Rev. C 1997, 56, 2451–2467. [Google Scholar] [CrossRef]
- Ashitkov, V.D.; Barabash, A.S.; Belogurov, S.G.; Carugno, G.; Konovalov, S.I.; Massera, F.; Puglierin, G.; Saakyan, R.R.; Stekhanov, V.N.; Umatov, V.I. Double Beta Decay of 100Mo. JETP Lett. 2001, 74, 529–531. [Google Scholar] [CrossRef]
- Cardani, L.; Gironi, L.; Ferreiro Iachellini, N.; Pattavina, L.; Beeman, J.W.; Bellini, F.; Casali, N.; Cremonesi, O.; Dafinei, I.; Di Domizio, S.; et al. First bolometric measurement of the two neutrino double beta decay of 100Mo with a ZnMoO4 crystals array. J. Phys. G 2014, 41, 075204. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, H.; Ly, C.V.; Suzuki, K. Geochemical evidence of the double β decay of 100Mo. Phys. Rev. C 2004, 70, 025501. [Google Scholar] [CrossRef]
- Barabash, A.S.; Avignone, F.T., III; Collar, J.I.; Guerard, C.K.; Arthur, R.J.; Brodzinski, R.L.; Miley, H.S.; Reeves, J.H.; Meier, J.R.; Ruddick, K.; et al. Two neutrino double-beta decay of 100Mo to the first excited 0+ state in 100Ru. Phys. Lett. B 1995, 345, 408–413. [Google Scholar] [CrossRef]
- Barabash, A.S.; Gurriaran, R.; Hubert, F.; Hubert, P.; Umatov, V.I. 2νββ decay of 100Mo to the first 0+ excited state in 100Ru. Phys. At. Nucl. 1999, 62, 2039–2043. [Google Scholar]
- De Braeckeleer, L.; Hornish, M.; Barabash, A.; Umatov, V. Measurement of the ββ-decay rate of 100Mo to the first excited 0+ state of 100Ru. Phys. Rev. Lett. 2001, 86, 3510–3513. [Google Scholar] [CrossRef]
- Kidd, M.F.; Esterline, J.H.; Tornow, W.; Barabash, A.S.; Umatov, V.I. New results for double-beta decay of 100Mo to excited final states of 100Ru using the TUNL-ITEP apparatus. Nucl. Phys. A 2009, 821, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Bongrand, M.; Broudin, G.; Brudanin, V.; Caffrey, A.J.; Egorov, V.; Etienvre, A.I.; et al. Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment. Nucl. Phys. A 2007, 781, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; Kobychev, V.V.; Kropivyansky, B.N.; et al. New observation of 2νββ decay of 100Mo to the 01+ level of 100Ru in the ARMONIA experiment. Nucl. Phys. A 2010, 846, 143–156. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A.J.; et al. Investigation of double beta decay of 100Mo to excited states of 100Ru. Nucl. Phys. A 2014, 925, 25–36. [Google Scholar]
- Ejiri, H.; Fushimi, K.; Hazama, R.; Kawasaki, M.; Kouts, V.; Kudomi, N.; Kume, K.; Nagata, K.; Ohsumi, H.; Okada, K.; et al. Double beta decays of Cd-116. J. Phys. Soc. Jpn 1995, 64, 339–343. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Barabash, A.S.; Blum, D.; Brudanin, V.; Campagne, J.E.; Dassie, D.; Egorov, V.; Eschbach, R.; Guyonnet, J.L.; et al. Double-β decay of 116Cd. Z. Phys. C 1996, 72, 239–247. [Google Scholar]
- Danevich, F.A.; Georgadze, A.S.; Kobychev, V.V.; Kropivyansky, B.N.; Nikolaiko, A.S.; Ponkratenko, O.A.; Tretyak, V.I.; Zdesenko, S.Y.; Zdesenko, Y.G. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment. Phys. Rev. C 2003, 68, 035501. [Google Scholar] [CrossRef]
- Manuel, O.K. Geochemical measurements of double-beta decay. J. Phys. G 1991, 17, S221–S229. [Google Scholar] [CrossRef]
- Bernatowicz, T.; Brannon, J.; Brazzle, R.; Cowsik, R.; Hohenberg, C.; Podosek, F. Precise determination of relative and absolute ββ-decay rates of 128Te and 130Te. Phys. Rev. C 1993, 47, 806–825. [Google Scholar] [CrossRef]
- Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Bernatowicz, T.J.; Kapusta, Y.S. 130Te and 128Te double beta decay half-lives. Nucl. Phys. A 2008, 809, 275–289. [Google Scholar] [CrossRef]
- Thomas, H.V.; Pattrick, R.A.D.; Crowther, S.A.; Blagburn, D.J.; Gilmour, J.D. Geochemical constraints on the half-life of 130Te. Phys. Rev. C 2008, 78, 054606. [Google Scholar] [CrossRef]
- Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pedretti, M.; et al. A calorimetric search on double beta decay of 130Te. Phys. Lett. B 2003, 557, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Bongrand, M.; Broudin-Bay, G.M.; Brudanin, V.; Caffrey, A.J.; et al. A calorimetric search on double beta decay of 130Te. Phys. Rev. Lett. 2011, 107, 062504. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; et al. Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector. Phys. Rev. C 2014, 89, 015502. [Google Scholar] [CrossRef] [Green Version]
- Artemiev, V.; Brakchman, E.; Karelin, A.; Kirichenko, V.; Klimenko, A.; Kozodaeva, O.; Lubimov, V.; Mitin, A.; Osetrov, S.; Paramokhin, V.; et al. Half-life measurement of 150Nd 2νββ decay in the time projection chamber experiment. Phys. Lett. B 1995, 345, 564–568. [Google Scholar] [CrossRef]
- Barabash, A.S.; Hubert, P.; Nachab, A.; Umatov, V.I. Investigation of ββ decay in 150Nd and 148Nd to the excited states of daughter nuclei. Phys. Rev. C 2009, 79, 045501. [Google Scholar] [CrossRef] [Green Version]
- Kidd, M.F.; Esterline, J.H.; Finch, S.W.; Tornow, W. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm. Phys. Rev. C 2014, 90, 055501. [Google Scholar] [CrossRef]
- Turkevich, A.L.; Economou, T.E.; Cowan, G.A. Double beta decay of 238U. Phys. Rev. Lett. 1991, 67, 3211–3214. [Google Scholar] [CrossRef]
- Barabash, A.S.; Saakyan, R.R. Experimental limits on 2β+, Kβ+ and 2K processes for 130Ba and on 2K capture for 132Ba. Phys. At. Nucl. 1996, 59, 179–184. [Google Scholar]
- Pujol, M.; Marty, B.; Burnard, P.; Philippot, P. Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim. Cosmochim. Acta 2009, 73, 6834–6846. [Google Scholar] [CrossRef]
- Barabash, A.S.; Brudanin, V.B. Investigation of double-beta decay with the NEMO-3 detector. Phys. At. Nucl. 2011, 74, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.T.; Elliott, S.R. The search for double beta decay with germanium detectors: Past, present, and future. Front. Phys. 2019, 7, 6. [Google Scholar] [CrossRef]
- Manuel, O.K. Geochemical Measurements of Double Beta Decay; World Scientific: Singapore, 1986; pp. 71–80. [Google Scholar]
- Domin, P.; Kovalenko, S.; Simkovic, F.; Semenov, S.V. Neutrino accompanied β±β±, β+/EC and EC/EC processes within single state dominance hypothesis. Nucl. Phys. A 2005, 753, 337–363. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, S.I.; Klimenko, A.A.; Osetrov, S.B.; Pomanskii, A.A.; Smolnikov, A.A. Observation of the excess of events in the experiment on the search for a two-neutrino double beta decay of 100Mo. JETP Lett. 1990, 51, 622–626. [Google Scholar]
- Takaoka, N.; Ogata, K. The half-life of Te-130 double beta-decay. Z. Naturforsch 1966, 21, 84–90. [Google Scholar] [CrossRef]
- Takaoka, N.; Motomura, Y.; Nagao, K. Half-life of 130Te double-β decay measured with geologically qualified samples. Phys. Rev. C 1996, 53, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, N.; Aharmim, B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Barry, K.; Bartoszek, L.; Beauchamp, E.; Belov, V. Observation of two-neutrino double-beta decay in 136Xe with the EXO-200 detector. Phys. Rev. Lett. 2011, 107, 212501. [Google Scholar] [CrossRef] [PubMed]
- Auger, M.; Auty, D.J.; Barbeau, P.S.; Beauchamp, E.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cleveland, B.; et al. Search for neutrinoless double-beta decay in 136Xe with EXO-200. Phys. Rev. Lett. 2012, 109, 032505. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakada, T.; et al. Limits on Majoron-emitting double-β decays of 136Xe in the KamLAND-Zen experiment. Phys. Rev. C 2012, 86, 021601. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakada, T.; et al. Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment. Phys. Rev. C 2012, 85, 045504. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Hubert, F.; Hubert, P.; Umatov, V.I. Double beta decay of 150Nd to the first 0+ excited state of 150Sm. JETP Lett. 2004, 79, 10–12. [Google Scholar] [CrossRef]
- Singh, S.; Chandra, R.; Rath, P.K.; Raina, P.K.; Hirsch, J.G. Nuclear deformation and the two-neutrino double-β decay in 124,126Xe, 128,130Te, 130,132Ba and 150Nd isotopes. Eur. Phys. J. A 2007, 33, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. Neutrinoless double-positron decay and positron-emitting electron capture in the interacting boson model. Phys. Rev. C 2013, 87, 057301. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, B. Barites: Anomalous xenon from spallation and neutron-induced reactions. Earth Planet. Sci. Lett. 1976, 31, 129–141. [Google Scholar] [CrossRef]
- Gavrilyuk, Y.M.; Gangapshev, A.M.; Kazalov, V.V.; Kuzminov, V.V.; Panasenko, S.I.; Ratkevich, S.S. Indications of 2ν2K capture in 78Kr. Phys. Rev. C 2013, 87, 035501. [Google Scholar] [CrossRef]
- Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; et al. Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I. Prog. Theor. Exp. Phys. 2018, 2018, 053D03. [Google Scholar]
- Kotila, J.; Iachello, F. Phase space factors for β+β+ decay and competing modes of double-β decay. Phys. Rev. C 2013, 87, 024313. [Google Scholar] [CrossRef] [Green Version]
1. | It was experimentally demonstrated that in some nuclei (Se, Mo and Cd) the SSD mechanism is realized. In this case, the spectra (total energy, single electron energy and angular distribution) differ from the case of the High State Dominance (HSD) mechanism. In principle, this does not affect the half-life of the corresponding nuclei. In a real experiment, energy is recorded with a certain threshold, which can affect the efficiency of recording useful events. The neglect of this effect can lead to an error in the determination of (up to ∼ 10–15%). This is especially noticeable in experiments where the energy of an individual electron is recorded (for example, the NEMO-3 experiment). |
2. | I do not consider here the result of Ref. [92] because of a high background contribution that was not excluded in this experiment. As a result, the “positive” effect is mainly associated with the background. Calculations show that without the background contribution to the “positive” effect, the sensitivity of the experiment was simply not enough to detect Mo decay. |
Nucleus | N | , yr | S/B | Ref., Year |
---|---|---|---|---|
Ca | 1/5 | [42], 1996 | ||
5 | 5/0 | [43], 2000 | ||
116 | 3.9 | [29], 2016 | ||
Average value: | ||||
Ge | ∼ 1/8 | [44], 1990 | ||
758 | [45], 1991 | |||
∼1.2 | [46], 1991 | |||
132 | [47], 1994 | |||
∼1.5 | [48], 1999 | |||
∼1.5 | [49], 2003 | |||
25,690 | ∼3 | [30], 2015 | ||
Average value: | ||||
Se | 89.6 | [50], 1992 | ||
149.1 | 2.3 | [51], 1998 | ||
2750 | 4 | [31], 2018 | ||
∼200,000 | ∼10 | [32], 2019 | ||
(geochem.) | [52], 1986 | |||
Average value: | ||||
Zr | 26.7 | [53], 1999 | ||
453 | 1 | [54], 2010 | ||
(geochem.) | [55], 1993 | |||
(geochem.) | [56], 2001 | |||
Average value: | ||||
Mo | ∼500 | 1/7 | [57], 1991 | |
67 | 7 | [58], 1991 | ||
1433 | 3 | [59], 1995 | ||
175 | 1/2 | [60], 1997 | ||
377 | 10 | [61], 1997 | ||
800 | 1/9 | [62], 2001 | ||
∼350 | ∼ | [63], 2014 | ||
500,000 | 80 | [3], 2019 | ||
35,638 | 10 | [33], 2020 | ||
(geochem.) | [64], 2004 | |||
Average value: | ||||
Mo - | 1/7 | [65], 1995 | ||
Ru () | 1/4 | [66], 1999 | ||
19.5 | ∼8 | [67], 2001 | ||
35.5 | ∼8 | [68], 2009 | ||
37.5 | ∼3 | [69], 2007 | ||
∼1/10 | [70], 2010 | |||
2 | [71], 2014 | |||
Average value: | ||||
Cd | ∼1/4 | [72], 1995 | ||
174.6 | 3 | [73], 1996 | ||
9850 | ∼3 | [74], 2003 | ||
4968 | 12 | [34], 2017 | ||
93,000 | 1.5 | [35], 2018 | ||
Average value: | ||||
Te | (geochem.) | [75], 1991 | ||
(geochem.) | [76], 1993 | |||
(geochem.) | [77], 2008 | |||
(geochem.) | [78], 2008 | |||
Recommended value: | ||||
Te | 260 | 1/8 | [79], 2003 | |
236 | 1/3 | [80], 2011 | ||
∼33,000 | 0.1–0.5 | [36], 2017 | ||
∼20,000 | >1 | [37], 2020 | ||
(geochem.) | [75], 1991 | |||
(geochem.) | [76], 1993 | |||
(geochem.) | [77], 2008 | |||
(geochem.) | [78], 2008 | |||
Average value: | ||||
Xe | ∼19,000 | ∼10 | [81], 2014 | |
∼100,000 | ∼10 | [38], 2016 | ||
Average value: | ||||
Nd | 23 | 1.8 | [82], 1995 | |
414 | 6 | [61], 1997 | ||
2214 | 4 | [39], 2016 | ||
Average value: | ||||
Recommended value: | ||||
Nd - | 1/5 | [83], 2009 | ||
Sm () | 21.6 | ∼1.2 | [84], 2014 | |
∼6 | ∼2 | [40], 2019 | ||
Average value: | ||||
U | (radiochem.) | [85], 1991 |
Nucleus | N | , yr | S/B | Ref., Year |
---|---|---|---|---|
Ba | (geochem.) | [86], 1996 | ||
(geochem.) | [11], 2001 | |||
(geochem.) | [87], 2009 | |||
Recommended value: | ||||
Kr | 15 | 15 | [13], 2017 | |
Recommended value: (?) | ||||
Xe | 126 | 0.2 | [12], 2019 | |
Recommended value: |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabash, A. Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review. Universe 2020, 6, 159. https://doi.org/10.3390/universe6100159
Barabash A. Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review. Universe. 2020; 6(10):159. https://doi.org/10.3390/universe6100159
Chicago/Turabian StyleBarabash, Alexander. 2020. "Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review" Universe 6, no. 10: 159. https://doi.org/10.3390/universe6100159
APA StyleBarabash, A. (2020). Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review. Universe, 6(10), 159. https://doi.org/10.3390/universe6100159