Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data
Abstract
:1. Introduction
2. Description of the Problem
2.1. SEP Events
2.2. Solar Flares
2.3. Radio Bursts
- Type II:
- Type III:
- Type IV:
3. Methodology
3.1. Pre-Processing Events from NOAA/NASA Files
- An event ID, which identifies the different phenomena that are associated with the same event, as well as the beginning and end of the phenomenon. It also includes the peak time for some of them.
- The observatory that measured the phenomena, from a list of seven observatories in the USA, Australia, and Italy. The quality of the measurements is also presented.
- The type of phenomenon, which includes all the phenomena previously cited, and others that are not relevant for this work. There is also specific information, depending on the type. This is explained later.
- The assigned solar region number.
- Start and peak time of the event, and maximum proton flux.
- Associated CME, only since 1997.
- Associated flare, including the time when the peak of the flare was produced, the importance of the flare, the location in heliolatitude and heliolongitude, and the region.
- ID of the event,
- Date of the event,
- Peak value of the flare taken from X-ray information, if it exists,
- Start, end, and peak times, also taken from X-ray information,
- The location of the flare in solar coordinates,
- Intensity, frequency range, duration, and rise time for each of the different types of sweep-frequency radio bursts included in the edited event list. The frequency range of the radio sweep bursts was 25–180 MHz.
3.2. Associating Events
3.3. Filtering Events
3.4. Usability of the Radio Burst Information
3.5. Preparing Instances for the Machine Learning
3.6. Generating the Prediction Model
3.7. Optimization of the Decision Tree
3.8. Analysis of Variable in the Decision Tree
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reames, D.V. Solar energetic particle variations. Adv. Space Res. 2004, 34, 381–390. [Google Scholar] [CrossRef]
- Shea, M.A.; Smart, D.F. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 2012, 171, 161–188. [Google Scholar]
- Durante, M.; Cucinotta, F.A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 2011, 83, 1245. [Google Scholar] [CrossRef]
- Hoff, J.L.; Townsend, L.W.; Zapp, E.N. Interplanetary crew doses and dose equivalents: Variations among different bone marrow and skin sites. Adv. Space Res. 2004, 34, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- García-Rigo, A.; Núñez, M.; Qahwaji, R.; Ashamari, O.; Jiggens, P.; Pérez, G.; Hernández-Pajares, M.; Hilgers, A. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations. J. Space Weather Space Clim. 2016, 6, A28. [Google Scholar]
- Mertens, C.J.; Kress, B.T.; Wiltberger, M.; Blattnig, S.R.; Slaba, T.S.; Solomon, S.C.; Engel, M. Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003. Space Weather 2010, 8, S03006. [Google Scholar]
- Tsagouri, I.; Belehaki, A.; Bergeot, N.; Cid, C.; Delouille, V.; Egorova, T.; Jakowski, N.; Kutiev, I.; Mikhailov, A.; Núñez, M.; et al. Progress in space weather modeling in an operational environment. J. Weather Space Clim. 2013, 3, A17. [Google Scholar]
- Beck, P.; Latocha, M.; Rollet, S.; Stehno, G. TEPC reference measurements at aircraft altitudes during a solar storm. Adv. Space Res. 2005, 16, 1627–1633. [Google Scholar] [CrossRef]
- Balch, C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 2008, 6, S01001. [Google Scholar]
- Laurenza, M.; Alberti, T.; Cliver, E.W. A Short-term ESPERTA-based Forecast Tool for Moderate-to-extreme Solar Proton Events. Astrophys. J. 2018, 857, 2. [Google Scholar] [CrossRef]
- Laurenza, M.; Cliver, E.W.; Hewitt, J.; Storini, M.; Ling, A.G.; Balch, C.C.; Kaiser, M.L. A technique for short-term warning of solar energetic particle events based on are location, are size, and evidence of particle escape. Space Weather 2009, 7. [Google Scholar] [CrossRef] [Green Version]
- Boubrahimi, S.F.; Aydin, B.; Martens, P.C.; Angryk, R.A. On the prediction of >100 MeV solar energetic particle events using GOES satellite data. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Cane, H.V.; Reames, D.V. Some statistics of solar radio bursts of spectral types II and IV. Astrophys. J. 1988, 325, 901. [Google Scholar] [CrossRef]
- Winter, L.M.; Ledbetter, K. Type II and Type III Radio Bursts and their correlation with solar energetic proton events. Astrophys. J. 2015, 809. [Google Scholar] [CrossRef] [Green Version]
- Kahler, S. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. Space Phys. 1982, 87, A5. [Google Scholar] [CrossRef]
- Kahler, S.W. Radio burst characteristics of solar proton flares. Astrophys. J. 1982, 261, 710–719. [Google Scholar] [CrossRef]
- Cliver, E.W. Solar Radio Bursts and Energetic Particle Events. AIP Conf. Proc. 2008, 1039, 190. [Google Scholar]
- Cliver, E.W.; Ling, A.G. Low-Frequency Type III Bursts and Solar Energetic Events. Astrophys. J. 2009, 690, 598. [Google Scholar] [CrossRef]
- Cane, H.V.; Erickson, W.C.; Prestage, N.P. Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. Space Phys. 2002, 107, A10. [Google Scholar] [CrossRef] [Green Version]
- Coffey, J.R.; Winter, L.M. Forecasting SEP Events with Solar Radio Bursts. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Miteva, R.; Samwel, S.W.; Krupar, V. Solar energetic particles and radio burst emission. J. Space Weather Space Clim. 2017, 7, A37. [Google Scholar] [CrossRef]
- Mann, G.; Melnik, V.N.; Rucker, H.O.; Konovalenko, A.A.; Brazhenko, A.I. Radio signatures of shock-accelerated electron beams in the solar corona. Astron. Astrophys. 2018, 609, A41. [Google Scholar] [CrossRef]
- Ameri, D.; Valtonen, E.; Pohjolainen, S. Properties of High-Energy Solar Particle Events Associated with Solar Radio Emissions. Sol. Phys. 2019, 294, 122. [Google Scholar] [CrossRef] [Green Version]
- Miteva, R.; Klein, K.L.; Samwel, S.W.; Nindos, A.; Kouloumvakos, A.; Reid, H. Radio signatures of solar energetic particles during the 23rd solar cycle. Cent. Eur. Astrophys. Bull. 2013, 37, 541–553. [Google Scholar]
- Information about Edited Event Files. Available online: ftp://ftp.swpc.noaa.gov/pub/indices/events/ (accessed on 24 September 2020).
- NASA/NOAA SEP List. Available online: Ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt (accessed on 24 September 2020).
- López, V.; Fernández, A.; García, S.; Palada, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar]
- He, H.; García, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Elkan, C. The foundations of cost-sensitive learning. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; Volume 2, pp. 973–978. [Google Scholar]
- Ting, K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Trans. Knowl. Data Eng. 2002, 14, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.M.; McCarthy, K.L.; Zabar, B. Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs? In Proceedings of the 2007 International Conference on Data Mining, Omaha, NE, USA, 28–31 October 2007. [Google Scholar]
- Classbalancer. Available online: http://weka.sourceforge.net/doc.dev/weka/lters/supervised/instance/ClassBalancer.html (accessed on 24 September 2020).
- Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on J48 algorithm for data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 1114–1119. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2011. [Google Scholar]
- Bradley, A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Flach, P.; Kull, M. Precision-Recall-Gain Curves: PR Analysis Done Right. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2015), Montreal, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Gerapetritis, H.; Pelissier, J.M. On the Behaviour of the Critical Success Index; Eastern Region Technical Attachment No. 2004-03; NOAA/National Weather Service Press: Silver Spring, MD, USA, 2004.
- Núñez, M.; Reyes-Santiago, P.J.; Malandraki, O.E. Real-time prediction of the occurrence of GLE events. Space Weather 2017, 15. [Google Scholar] [CrossRef]
- Núñez, M. Predicting well-connected SEP events from observations of solar soft X-rays and near-relativistic electrons. J. Space Weather Space Clim. 2018, 8, A36. [Google Scholar] [CrossRef]
- Núñez, M.; Nieves-Chinchilla, T.; Pulkkinen, A. Predicting well-connected SEP events from observations of solar EUVs and energetic protons. J. Space Weather Space Clim. 2019, 9, A27. [Google Scholar] [CrossRef]
- Alberti, T.; Laurenza, M.; Cliver, E.W.; Storini, M.; Consolini, G.; Lepreti, F. Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the ESPERTA model. Astrophys. J. 2017, 838, 59. [Google Scholar] [CrossRef]
- Núñez, M. Predicting Solar Energetic Proton Events (E > 10 MeV). Space Weather 2011, 9, S07003. [Google Scholar] [CrossRef]
- Zucca, P.; Núñez, M.; Klein, K.L. Exploring the potential of microwave diagnostics in SEP forecasting: The occurrence of SEP events. J. Space Weather Space Clim. 2017, 7, A13. [Google Scholar] [CrossRef]
- Núñez, M. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 2015, 13, 11. [Google Scholar] [CrossRef]
- Anastasiadis, A.; Lario, D.; Papaioannou, A.; Athanasios, K.; Angelos, V. Solar energetic particles in the inner heliosphere: Status and open questions. Philos. Trans. R. Soc. 2018, 377, 20180100. [Google Scholar] [CrossRef]
Type | Features | Duration | Frequency Range | Associated Phenomena |
---|---|---|---|---|
II | Slow-frequency drift bursts | 3–30 min | 20–150 MHz | Shock-accelerated electrons |
III | Fast-frequency drift bursts | Burst: 1–3 s Group: 1–5 min Storm: minutes–hours | 10 kHz–1 GHz | Electron escape |
IV | Broadband continuum | Hours to Days | 20 MHz–2 GHz | Trapped electrons |
Date | Proton Flux (pfu) | Flare Peak | Flare Location |
---|---|---|---|
4 November 1997 | 72 | X2 | S14W33 |
6 November 1997 | 490 | X9 | S18W63 |
2 May 1998 | 150 | X1 | S15W15 |
6 May 1998 | 210 | X2 | S11W65 |
24 August 1998 | 670 | X1 | N30E07 |
25 September 1998 | 44 | M7 | N18E09 |
30 September 1998 | 1200 | M2 | N23W81 |
23 January 1999 | 14 | M5 | N27E90 |
5 May 1999 | 14 | M4 | N15E32 |
4 June 1999 | 64 | M3 | N17W69 |
7 June 2000 | 84 | X2 | N20E18 |
10 June 2000 | 46 | M5 | N22W38 |
14 July 2000 | 24,000 | X5 | N22W07 |
22 July 2000 | 17 | M3 | N14W56 |
16 October 2000 | 15 | M2 | N04W90 |
8 November 2000 | 14,800 | M7 | N05W77 |
24 November 2000 | 940 | X2 | N20W05 |
29 March 2001 | 35 | X1 | N14W12 |
2 April 2001 | 1110 | X20 | N18W82 |
10 April 2001 | 355 | X2 | S23W09 |
15 April 2001 | 951 | X14 | S20W85 |
28 April 2001 | 57 | M7 | N17W31 |
24 September 2001 | 12,900 | X2 | S16E23 |
1 October 2001 | 2360 | M9 | S22W91 |
19 October 2001 | 11 | X1 | N15W29 |
22 October 2001 | 24 | X1 | S18E16 |
4 November 2001 | 31,700 | X1 | N06W18 |
19 November 2001 | 34 | M2 | S13E42 |
22 November 2001 | 18,900 | M9 | S15W34 |
26 December 2001 | 779 | M7 | N08W54 |
29 December 2001 | 76 | X3 | S26E90 |
20 February 2002 | 13 | M5 | N12W72 |
17 March 2002 | 13 | M2 | S08W03 |
17 April 2002 | 24 | M2 | S14W34 |
21 April 2002 | 2520 | X1 | S14W84 |
16 July 2002 | 234 | X3 | N19W01 |
14 August 2002 | 26 | M2 | N09W54 |
22 August 2002 | 36 | M5 | S07W62 |
24 August 2002 | 317 | X3 | S08W90 |
9 November 2002 | 404 | M4 | S12W29 |
28 May 2003 | 121 | X3 | S07W17 |
31 May 2003 | 27 | M9 | S07W65 |
18 June 2003 | 24 | M6 | S08E61 |
26 October 2003 | 466 | X1 | N02W38 |
28 October 2003 | 29,500 | X17 | S16E08 |
21 November 2003 | 13 | M5 | N02W17 |
13 September 2004 | 273 | M4 | N04E42 |
7 November 2004 | 495 | X2 | N09W17 |
16 January 2005 | 5040 | X2 | N15W05 |
14 May 2005 | 3140 | M8 | N12E11 |
16 June 2005 | 44 | M4 | N09W87 |
14 July 2005 | 134 | M5 | N10W80 |
27 July 2005 | 41 | M3 | N11E90 |
22 August 2005 | 330 | M5 | S12W60 |
8 September 2005 | 1880 | X17 | S06E89 |
6 December 2006 | 1980 | X9 | S07E79 |
13 December 2006 | 698 | X3 | S05W23 |
8 March 2011 | 50 | M3 | N24W59 |
7 June 2011 | 72 | M2 | S21W64 |
4 August 2011 | 96 | M9 | N15W49 |
9 August 2011 | 26 | X6 | N17W83 |
23 September 2011 | 35 | X1 | N11E74 |
23 January 2012 | 6310 | M8 | N28W36 |
27 January 2012 | 796 | X1 | N27W71 |
7 March 2012 | 6530 | X5 | N17E15 |
13 March 2012 | 469 | M7 | N18W62 |
17 May 2012 | 255 | M5 | N12W89 |
7 July 2012 | 25 | X1 | S18W50 |
12 July 2012 | 96 | X1 | S16W09 |
11 April 2013 | 114 | M6 | N09E12 |
14 May 2013 | 41 | X1 | N11E51 |
22 May 2013 | 1660 | M5 | N15W70 |
23 June 2013 | 14 | M2 | S16E66 |
20 February 2014 | 22 | M3 | S15W67 |
25 February 2014 | 103 | X4 | S12E82 |
Date | SEP | Flare Location | RSP II (min) | RSP III (min) | RSP IV (min) | RSP V (min) |
---|---|---|---|---|---|---|
4 November 1997 | X2.1 | S14W33 | 139 | 139 | −109 | 136 |
6 November 1997 | X9.4 | S18W63 | - | - | −654 | - |
2 May 1998 | X1.1 | S15W15 | - | - | −541 | - |
6 May 1998 | X2.7 | S11W65 | - | - | −54 | - |
24 August 1998 | X1.0 | N35E09 | −5 | 110 | −5 | - |
25 September 1998 | M7.1 | N18E09 | 2465 | 2447 | 2288 | - |
30 September 1998 | M2.8 | N23W81 | 110 | - | 73 | 125 |
23 January 1999 | M5.2 | N27E90 | 3822 | - | 3801 | 3810 |
5 May 1999 | M4.4 | N15E32 | 3614 | - | 3551 | - |
4 June 1999 | M3.9 | N17W69 | - | - | 117 | - |
7 June 2000 | X2.3 | N20E18 | 1316 | 1346 | 974 | - |
10 June 2000 | M5.2 | N22W38 | 47 | 66 | - | - |
14 July 2000 | X5.7 | N22W07 | 19 | - | −431 | - |
22 July 2000 | M3.7 | N14W56 | 99 | - | −271 | - |
16 October 2000 | M2.5 | N04W90 | 247 | 265 | −755 | - |
8 November 2000 | M7.4 | N10W77 | - | 42 | 20 | - |
24 November 2000 | X2.0 | N20W05 | 591 | - | - | - |
29 March 2001 | X1.7 | N20W19 | - | 387 | - | - |
2 April 2001 | X20 | N18W82 | 103 | 107 | - | - |
10 April 2001 | X2.3 | S23W09 | 213 | 200 | −357 | - |
15 April 2001 | X14.4 | S20W85 | 15 | 24 | −55 | - |
28 April 2001 | M7.8 | N17W31 | 2331 | 2360 | 1756 | - |
24 September 2001 | X2.6 | S16E23 | - | 163 | −495 | - |
1 October 2001 | M9.1 | S22W91 | - | 380 | - | - |
19 October 2001 | X1.6 | N15W29 | 343 | - | 321 | - |
22 October 2001 | X1.2 | S18E16 | 60 | 71 | - | - |
4 November 2001 | X1.0 | N06W18 | 44 | - | −105 | - |
19 November 2001 | M2.8 | S13E42 | 3335 | - | 3005 | - |
22 November 2001 | M9.9 | S15W34 | 39 | - | −280 | - |
26 December 2001 | M7.1 | N08W54 | 46 | - | −457 | - |
29 December 2001 | X3.4 | S26E90 | 510 | - | - | - |
20 February 2002 | M5.1 | N12W72 | 62 | 93 | 53 | 92 |
17 March 2002 | M2.2 | S08W03 | - | - | 1895 | - |
17 April 2002 | M2.6 | S14W34 | 427 | 426 | −62 | - |
21 April 2002 | X1.5 | S14W84 | 55 | 63 | −20 | - |
16 July 2002 | X3.0 | N19W01 | - | 1304 | 1070 | - |
14 August 2002 | M2.3 | N09W54 | 412 | 421 | - | 415 |
22 August 2002 | M5.4 | S07W62 | 158 | 165 | - | - |
24 August 2002 | X3.1 | S02W81 | 26 | 37 | 4 | - |
9 November 2002 | M4.6 | S12W29 | 343 | - | 327 | - |
28 May 2003 | X3.6 | S07W17 | 1382 | 1388 | 1254 | - |
31 May 2003 | M9.3 | S07W65 | 127 | - | - | 133 |
18 June 2003 | M6.8 | S08E61 | 1312 | 1326 | 1250 | - |
26 October 2003 | X1.2 | N02W38 | 42 | - | - | - |
28 October 2003 | X17.2 | S16E08 | 64 | - | −196 | - |
21 November 2003 | M5.8 | N02W17 | - | 1441 | - | - |
13 September 2004 | M4.8 | N04E42 | 2656 | 2648 | 2615 | - |
7 November 2004 | X2.0 | N09W17 | 174 | - | −889 | - |
16 January 2005 | X2.6 | N14W08 | 192 | - | −502 | - |
14 May 2005 | M8.0 | N12E12 | 753 | 764 | 508 | - |
16 June 2005 | M4.0 | N09W87 | 104 | 118 | 93 | - |
14 July 2005 | M5.0 | N11W90 | - | 754 | - | 756 |
27 July 2005 | M3.7 | N11E90 | 1077 | - | - | - |
22 August 2005 | M5.6 | S12W60 | - | - | −65 | - |
8 September 2005 | X17.0 | S06E89 | 505 | - | 449 | - |
6 December 2006 | X9.0 | S07E79 | 1756 | 1761 | 1741 | - |
13 December 2006 | X3.4 | S06W24 | 35 | 29 | −1250 | - |
8 March 2011 | M3.7 | N24W59 | 290 | - | - | - |
7 June 2011 | M2.5 | S21W54 | 90 | - | 82 | - |
4 August 2011 | M9.3 | N19W36 | 152 | 162 | - | 154 |
9 August 2011 | X6.9 | N17W69 | 29 | - | - | - |
23 September 2011 | X1.4 | N11E74 | 2170 | - | - | - |
23 January 2012 | M8.7 | N28W21 | - | - | −211 | - |
27 January 2012 | X1.7 | N27W71 | 40 | - | 21 | - |
7 March 2012 | X5.4 | N17E27 | 279 | - | −320 | 291 |
13 March 2012 | M7.9 | N18W62 | - | - | - | - |
17 May 2012 | M5.1 | N11W76 | 29 | 33 | −42 | - |
7 July 2012 | X1.1 | S18W50 | 279 | 293 | - | 291 |
12 July 2012 | X1.4 | S15W01 | 102 | - | −324 | - |
11 April 2013 | M6.5 | N09E12 | 226 | 215 | −377 | - |
15 May 2013 | X1.2 | N12E64 | 700 | - | 697 | - |
22 May 2013 | M5.0 | N15W70 | 75 | - | 30 | - |
23 June 2013 | M2.9 | S16E73 | - | 3903 | 3878 | - |
20 February 2014 | M3.0 | S15W73 | 53 | 71 | - | 79 |
25 February 2014 | X4.9 | S12E82 | 773 | 785 | 741 | - |
Type | Number of RSPs | After the SEP | Percentage |
---|---|---|---|
II | 59 | 0 | 0.00% |
III | 38 | 0 | 0.00% |
IV | 54 | 25 | 46.30% |
V | 11 | 0 | 0.00% |
Model | Period | POD | FAR | AWT |
---|---|---|---|---|
UMASOD | 1997–2014 (a) | 70.2% (73/104) | 40.2% (49/122) | 9 h 52 min |
ESPERTA | 1995–2014 (b) | 62% (66/107) | 39% (42/108) | ~9 h |
ESPERTA | 1995–2005 (a) | 63% (47/75) | 42% (34/81) | ~9 h |
UMASEP-10 (vers2.0) | 1997–2014 (a) | 93.3% (70/75) | 25.5% (24/94) | 4 h 01 min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, M.; Paul-Pena, D. Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data. Universe 2020, 6, 161. https://doi.org/10.3390/universe6100161
Núñez M, Paul-Pena D. Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data. Universe. 2020; 6(10):161. https://doi.org/10.3390/universe6100161
Chicago/Turabian StyleNúñez, Marlon, and Daniel Paul-Pena. 2020. "Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data" Universe 6, no. 10: 161. https://doi.org/10.3390/universe6100161
APA StyleNúñez, M., & Paul-Pena, D. (2020). Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data. Universe, 6(10), 161. https://doi.org/10.3390/universe6100161