Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center
Abstract
:1. Introduction
2. Observational Data
3. Post-Newtonian Effects
3.1. Equations of Motion
3.2. Pericenter Shift
3.3. Light Propagation
4. Modeling
4.1. Parameters
4.2. Constructing a Model
5. MCMC Analysis
6. Tidal Disruption
7. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PPN | Parameterized Post-Newtonian |
VLSR | Velocity of the Local Standard of Rest |
MCMC | Markov Chain Monte Carlo |
RV | Radial Velocity |
Appendix A
References
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Eisenhauer, F.; Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 2010, 82, 3121–3195. [Google Scholar] [CrossRef]
- Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexand er, T.; Genzel, R.; Martins, F.; Ott, T. Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center. Astrophys. J. 2009, 692, 1075–1109. [Google Scholar] [CrossRef] [Green Version]
- Gillessen, S.; Plewa, P.M.; Eisenhauer, F.; Sari, R.; Waisberg, I.; Habibi, M.; Pfuhl, O.; George, E.; Dexter, J.; von Fellenberg, S.; et al. An Update on Monitoring Stellar Orbits in the Galactic Center. Astrophys. J. 2017, 837, 30. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. The short-period S-stars S4711, S62, S4714 and the Lense-Thirring effect due to the spin of Sgr A*. arXiv 2020, arXiv:2009.01158. [Google Scholar]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Misner, C.; Thorne, K.; Wheeler, J. Gravitation; Freeman and Co: San Francisco, CA, USA, 1973; p. 891. [Google Scholar]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef]
- Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Iorio, L. Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astron. J. 2019, 157, 220. [Google Scholar] [CrossRef] [Green Version]
- Pitjeva, E.V.; Pitjev, N.P. Masses of the Main Asteroid Belt and the Kuiper Belt from the Motions of Planets and Spacecraft. Astron. Lett. 2018, 44, 554–566. [Google Scholar] [CrossRef] [Green Version]
- Park, R.S.; Folkner, W.M.; Konopliv, A.S.; Williams, J.G.; Smith, D.E.; Zuber, M.T. Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft. Astron. J. 2017, 153, 121. [Google Scholar] [CrossRef]
- Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nat. Commun. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.M. The second post-Newtonian light propagation and its astrometric measurement in the solar system. Int. J. Mod. Phys. D 2015, 24, 1550056. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.M. The second post-Newtonian light propagation and its astrometric measurement in the Solar System: Light time and frequency shift. Int. J. Mod. Phys. D 2016, 25, 1650082. [Google Scholar] [CrossRef]
- Sanghai, V.A.A.; Clifton, T. Post-Newtonian cosmological modelling. Phys. Rev. D 2015, 91, 103532. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon: Oxford, UK, 1971. [Google Scholar]
- Baryshev, Y. Foundation of relativistic astrophysics: Curvature of Riemannian Space versus Relativistic Quantum Field in Minkowski Space. arXiv 2017, arXiv:1702.02020. [Google Scholar]
- Feynman, R.; Morinigo, F.; Wagner, W. Feynman Lectures on Gravitation; Addison-Wesley Publ. Comp.: Boston, MA, USA, 1995; p. 280. [Google Scholar]
- Baryshev, Y. Translational Motion of Rotating Bodies and Tests of the Equivalence Principle. Gravit. Cosmol. 2002, 8, 232–240. [Google Scholar]
- Preto, M.; Saha, P. On post-Newtonian orbits and the Galactic-center stars. Astrophys. J. 2009, 703, 1743. [Google Scholar] [CrossRef] [Green Version]
- Parsa, M.; Eckart, A.; Shahzamanian, B.; Karas, V.; Zajaček, M.; Zensus, J.A.; Straubmeier, C. Investigating the relativistic motion of the stars near the supermassive black hole in the galactic center. Astrophys. J. 2017, 845, 22. [Google Scholar] [CrossRef] [Green Version]
- Saida, H.; Nishiyama, S.; Ohgami, T.; Takamori, Y.; Takahashi, M.; Minowa, Y.; Najarro, F.; Hamano, S.; Omiya, M.; Iwamatsu, A.; et al. A significant feature in the general relativistic time evolution of the redshift of photons coming from a star orbiting Sgr A*. Publ. Astron. Soc. Jpn. 2019, 71, 126. [Google Scholar] [CrossRef]
- Gainutdinov, R.I. PPN motion of the S-stars around Sgr A. Astrophysics 2020, 63. in print. [Google Scholar]
- Peißker, F.; Eckart, A.; Parsa, M. S62 on a 9.9 yr Orbit around SgrA*. Astrophys. J. 2020, 889, 61. [Google Scholar] [CrossRef]
- Fragione, G.; Loeb, A. An upper limit on the spin of SgrA* based on stellar orbits in its vicinity. arXiv 2020, arXiv:2008.11734. [Google Scholar] [CrossRef]
- Boehle, A.; Ghez, A.M.; Schödel, R.; Meyer, L.; Yelda, S.; Albers, S.; Martinez, G.D.; Becklin, E.E.; Do, T.; Lu, J.R.; et al. An improved distance and mass estimate for Sgr A* from a multistar orbit analysis. Astrophys. J. 2016, 830, 17. [Google Scholar] [CrossRef]
- Chu, D.S.; Do, T.; Hees, A.; Ghez, A.; Naoz, S.; Witzel, G.; Sakai, S.; Chappell, S.; Gautam, A.K.; Lu, J.R.; et al. Investigating the Binarity of S0-2: Implications for Its Origins and Robustness as a Probe of the Laws of Gravity around a Supermassive Black Hole. Astrophys. J. 2018, 854, 12. [Google Scholar] [CrossRef] [Green Version]
- Do, T.; Hees, A.; Ghez, A.; Martinez, G.D.; Chu, D.S.; Jia, S.; Sakai, S.; Lu, J.R.; Gautam, A.K.; O’Neil, K.K.; et al. Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole. Science 2019, 365, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Gravity Collaboration. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef] [Green Version]
- Brumberg, V. Essential Relativistic Celestial Mechanics; IOP Publishing Ltd.: New York, NY, USA, 1991. [Google Scholar]
- Baryshev, Y.V. The equations of motion of the test particles in the Lorentz-covariant tensor gravity theory. Vestn. Leningr. State Univ. 1986, 1, 113–118. [Google Scholar]
- Damour, T.; Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-newtonian motion. Ann. l’I.H.P. Phys. Théorique 1985, 43, 107–132. [Google Scholar]
- Lämmerzahl, C.; Ciufolini, I.; Dittus, H.; Iorio, L.; Müller, H.; Peters, A.; Samain, E.; Scheithauer, S.; Schiller, S. OPTIS—An Einstein Mission for Improved Tests of Special and General Relativity. Gen. Relativ. Gravit. 2004, 36, 2373–2416. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, L. Post-Keplerian effects on radial velocity in binary systems and the possibility of measuring General Relativity with the star S2 in 2018. Mon. Not. R. Astron. Soc. 2017, 472, 2249–2262. [Google Scholar] [CrossRef] [Green Version]
- Rackauckas, C.; Nie, Q. Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in julia. J. Open Res. Softw. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef] [Green Version]
- Pfuhl, O.; Gillessen, S.; Eisenhauer, F.; Genzel, R.; Plewa, P.M.; Ott, T.; Ballone, A.; Schartmann, M.; Burkert, A.; Fritz, T.K.; et al. The Galactic Center cloud G2 and its gas streamer. Astrophys. J. 2015, 798, 111. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Star | S2 | S38 | S55 |
---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gainutdinov, R.; Baryshev, Y. Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center. Universe 2020, 6, 177. https://doi.org/10.3390/universe6100177
Gainutdinov R, Baryshev Y. Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center. Universe. 2020; 6(10):177. https://doi.org/10.3390/universe6100177
Chicago/Turabian StyleGainutdinov, Rustam, and Yurij Baryshev. 2020. "Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center" Universe 6, no. 10: 177. https://doi.org/10.3390/universe6100177
APA StyleGainutdinov, R., & Baryshev, Y. (2020). Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center. Universe, 6(10), 177. https://doi.org/10.3390/universe6100177