Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay
Abstract
:1. Introduction
2. DBD Transition Mode, DBD Neutrino-Mass Sensitivity and DBD NME
2.1. Neutrinoless DBD and Effective Neutrino Mass
2.2. DBD Neutrino-Mass Sensitivity and DBD Nuclear Matrix Element
3. Experimental Approaches to DBD NMEs
3.1. Experimental Studies of Two-Neutrino DBD NMEs
3.2. Nuclear Charge-Exchange Reactions
3.3. Leptonic (Muon and Neutrino) Charge-Exchange Reactions
3.4. Photo-Nuclear Reactions
4. Quenching Coefficient for Weak Coupling and DBD NME
5. Concluding Remarks and Discussions
Funding
Acknowledgments
Conflicts of Interest
References
- Ejiri, H. Double beta decays and neutrino masses. J. Phys. Soc. Jpn. 2005, 74, 2101–2127. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.; Elliott, S.; Engel, J. Double beta decay, Majorana neutrino, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Double β-decays and neutrino nuclear responses. Prog. Part. Nucl. Phys. 2010, 54, 249–257. [Google Scholar] [CrossRef]
- Vergados, J.; Ejiri, H.; Šimkovic, F. Theory of neutrinoless double-β-decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergados, J.; Ejiri, H.; Šimkovic, F. Neutrinoless double β-decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Fujita, J.I. Effective coupling constants for beta and gamma transitions in medium heavy nuclei. Phys. Rep. 1978, 38, 85–131. [Google Scholar] [CrossRef]
- Ejiri, H. Nuclear spin isospin responses for low-energy neutrinos. Phys. Rep. 2000, 338, 265–351. [Google Scholar] [CrossRef]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino nuclear responses for astro-neutrinos, single β-decays, and double β-decays. Phys. Rep. 2019, 797, 1–102. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak interaction and nuclear structure aspect of nuclear double beta decay. Phys. Rep. 1998, 300, 123–214. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Double-beta decay nuclear matrix elements in the pnQRPA framework. J. Phys. G Nucl. Part. Phys. 2012, 39, 035105. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double β-decay: A review. Rep. Prog. Phys. 2017, 60, 046301. [Google Scholar] [CrossRef] [PubMed]
- Kolita, J.; Iachello, F. Phase space factors for double-β decay. Phys. Rev. 2012, 85, 034316. [Google Scholar]
- Kolita, J.; Iachello, F. Phase space factors for β+β+ decay and competing models of double-β decay. Phys. Rev. 2013, 87, 024313. [Google Scholar]
- Stoica, S.; Mirea, M. New calculations for phase space factors involved in double-β decay. Phys. Rev. 2013, 88, 037303. [Google Scholar]
- Stoica, S.; Mirea, M. Phase space factors for double-beta decays. Front. Phys. 2019, 17, 12. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. (Super Kamiokande collaboration). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.R.; Observ, W.; Washington, U.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Buhler, G.; Barton, J.C.; Beier, J.W.; Bercovitch, M.; et al. Measurement of the rate of νe+d→p+p+e- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W.; et al. (KamLAND collaboration). First results from KamLAND: Evidence for reactor antineutrino disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Nuclear and detector sensitivities for neutrinoless double β-decay experiments. Adv. High Energy Phys. 2020. submitted. [Google Scholar]
- Doi, M.; Kotani, T.; Takasugi, E. Double beta decay and Majorana neutrino. Prog. Theor. Phys. 1985, 83, 1–175. [Google Scholar] [CrossRef] [Green Version]
- Faessler, A.; Simkovic, F. Double beta decay. J. Phys. G Nucl. Part. Phys. 1998, 24, 2139–2178. [Google Scholar] [CrossRef]
- Vergados, J.D. The neutrinoless double beta decay from a modern perspective. Phys. Rep. 2002, 361, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Detwiler, J. Future neutrino-less double-beta decay experiments. Proc. Neutrino 2020. [Google Scholar] [CrossRef] [Green Version]
- Alvis, S.I.; Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Basu, V.; Bertrand, F.E.; Bos, B.; Busch, M.; Buuck, M.; et al. Search for neutrinoless double-β decay in 76Ge with 26 kgy of exposure from the Majorana demonstrator. Phys. Rev. C 2019, 100, 025501. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; et al. Improved limit on neutrinoless double β-decay in 76Ge from GERDA Phase II. Phys. Rev. Lett. 2018, 120, 132503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T.; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. Improved limit on neutrinoless double-beta decay in 130Te with CUORE. Phys. Rev. Lett. 2019, 124, 122501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gando, A. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 109903. [Google Scholar] [CrossRef] [Green Version]
- Anton, G.; Badhrees, I.; Barbeau, P.S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G.F.; Cen, W.R.; et al. Search for neutrinoless double-β decay with the complete EXO-200 data set. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, P.; Suhonen, J. Systematic approach to β and 2νββ decays of mass A = 100–136 nuclei. Phys. Rev. 2015, 91, 054309. [Google Scholar]
- Simkovic, F.; Dvornicky, R.; Stefanik, D.; Faessler, A. Improved description of the 2νββ-decay and possibility to determine the effective axial-vector coupling constant. Phys. Rev. 2018, 97, 034315. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Minh, M.H.; Hayashida, S.; Honda, Y.; Hosokawa, K.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; et al. Precision analysis of the 136Xe two-neutrino ββ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements. Phys. Rev. Lett. 2019, 122, 192501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caurier, E.; Nowacki, F.; Poves, A. Shell model description of the ββ decay of 136Xe. Phys. Lett. 2012, 711, 62–64. [Google Scholar] [CrossRef] [Green Version]
- Coraggio, L.; De Angelis, L.; Fukui, T.; Gargano, A.; Itaco, N.; Nowacki, F. Renormalization of the Gamow-Teller operator within the realistic shell model. Phys. Rev. 2019, 100, 014316. [Google Scholar] [CrossRef] [Green Version]
- Coello Perez, E.A.; Menendez, J.; Schwenk, A. Two-neutrino double electron capture on 136Xe based on effective theory and the nuclear shell model. Phys. Lett. 2019, 797, 134885. [Google Scholar] [CrossRef]
- Kostensalo, J.; Suhonen, J. Consistent large-scale shell-model analysis of the two-neutrino ββ and single β bramchings in 48Ca and 96Zr. Phys. Lett. 2020, 802, 135192. [Google Scholar] [CrossRef]
- Yoshida, N.; Iachello, F. Two-neutrino double-β decay in the interacting boson fermion model. Prog. Theor. Exp. Phys. 2013, 2013, 043D01. [Google Scholar] [CrossRef] [Green Version]
- Coello Perez, E.A.; Menendez, J.; Schwenk, A. Gamow-teller and doubleβ decays of heavy nuclei with an effective theory. Phys. Rev. 2018, 98, 045501. [Google Scholar]
- Ejiri, H. Fermi surface quasi particle model nuclear matrix elements for two neutrino double beta decays. J. Phys. Nucl. Part. Phys. 2017, 44, 15201. [Google Scholar] [CrossRef] [Green Version]
- Thies, J.H.; Frekers, D.; Adachi, T.; Dozono, M.; Ejiri, H.; Fujita, H.; Fujiwara, M.; Grewe, E.W.; Hatanaka, K.; Heinrichs, P.; et al. The (3He,t) reaction on 76Ge, and double-β decay matrix element. Phys. Rev. 2012, 86, 014304. [Google Scholar]
- Thies, J.H.; Puppe, P.; Adachi, T.; Dozono, M.; Ejiri, H.; Frekers, D.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Grewe, E.W.; et al. High-resolution 100Mo (3He,t) charge-exchange experiment and the impact on double-β decays and neutrino charged-current reactions. Phys. Rev. 2012, 86, 44309. [Google Scholar]
- Puppe, P.; Lennarz, A.; Adachi, T.; Akimune, H.; Ejiri, H.; Frekers, D.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Grewe, E.W.; et al. High resolution (3He,t) experiment on the double-β decaying nuclei 128Te and 130Te. Phys. Rev. 2012, 86, 044603. [Google Scholar]
- Ejiri, H.; Frekers, D. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions. J. Phys. G Nucl. Part. Phys. 2016, 43, 11LT01. [Google Scholar] [CrossRef] [Green Version]
- Akimune, H.; Ejiri, H.; Hattori, F.; Agodi, C.; Alanssari, M.; Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Diel, F.; Douma, C.A.; et al. Spin-dipole nuclear matrix element for double beta decay of 76Ge by the (3He,t) charge-exchange reaction. J. Phys. G Nucl. Part. Phys. 2020, 47, 05LT01. [Google Scholar] [CrossRef]
- Ejiri, H. Axial-vector weak coupling at medium momentum for astro neutrinos and double beta decays. J. Phys. G Nucl. Part Phys. 2019, 46, 125202. [Google Scholar] [CrossRef] [Green Version]
- Measday, D.F. The nuclear physics of muon capture. Phys. Rep. 2001, 354, 243–409. [Google Scholar] [CrossRef]
- Hashim, I.; Ejiri, H.; Shima, T.; Takahisa, K.; Sato, A.; Kuno, Y.; Ninomiya, K.; Kawamura, N.; Miyake, Y. Muon capture reaction on 100Mo to study neutrino nuclear responses for double-β decays and neutrinos of astro-physics origins. Phys. Rev. 2018, 97, 014617. [Google Scholar]
- Jokiniemi, L.; Suhonen, J.; Ejiri, H.; Hashim, I. Pining down the strength function for ordinary muon capture on 100Mo. Phys. Lett. 2019, 794, 143–147. [Google Scholar] [CrossRef]
- Primakoff, H. Theory of muon capture. Rev. Mod. Phys. 1959, 31, 802–822. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Suhonen, J. Muon-capture strength functions in intermediate nuclei of 0∋ββ decays. Phys. Rev. 2019, 100, 014619. [Google Scholar]
- Ejiri, H.; Soukouti, N.; Suhonen, J. Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos. Phys. Lett. 2014, 729, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Suhonen, J. GT neutrino-nuclear responses for double beta decays and astro-neutrinos. J. Phys. G 2015, 42, 055201. [Google Scholar] [CrossRef]
- Simkovic, F.; Dvornieky, R.; Vogel, P. Muon capture rates: Evaluation within the quasiparticle random phase approximation. Phys. Rev. 2020, 102, 034301. [Google Scholar] [CrossRef]
- Plasil, F. ORLaND—Oak Ridge Laboratory for Neutrino Detectors. Acta Phys. Hung. A Heavy Ion Phys. 1999, 15, 381–390. [Google Scholar] [CrossRef]
- Ejiri, H. Neutrino studies in nuclei and intense neutrino sources. Nucl. Instr. Methods Phys. Res. 2003, 503, 276–278. [Google Scholar] [CrossRef]
- Ejiri, H.; Richard, P.; Ferguson, S.; Heffner, R.; Perry, R.D. Electric dipole transition from the f7/2 isobaric analogue state to the 2d5/2 ground state in 141Pr. Phys. Rev. Lett. 1968, 21, 373–376. [Google Scholar] [CrossRef]
- Ejiri, H.; Titov, A.; Bosewell, M.; Yang, A. Neutrino nuclear response and photonuclear reactions. Phys. Rev. 2013, 88, 054610. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Gamma Ray and Electron Spectroscopy in Nuclear Physics; Clarendon Press: London, UK, 1989. [Google Scholar]
- Suhonen, J. Impact of the quenching of gA on the sensitivity of 0νββ experiments. Phys. Rev. 2017, 96, 05501. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Nuclear matrix elements for β and ββ decays and quenching of the weak coupling gA in QRPA. Front. Phys. 2019. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Suhonen, J.; Ejiri, H. Magnetic hexadecapole γ transitions and neutrino-nuclear responses in medium heavy nuclei. Adv. High Energy Phys. 2016, 2016, 8417598. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Korita, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. 2013, 87, 014315. [Google Scholar]
- Jokiniemi, L.; Ejiri, H.; Frekers, D.; Suhonen, J. Neutrinoless ββ nuclear matrix elements using isovector spin-dipole Jπ=2− data. Phys. Rev. 2018, 98, 024608. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondì, M.; Carbone, D.; Cunsolo, A.; Foti, A. Heavy ion double charge exchange reactions: A tool toward 0νββ nuclear matrix elements. Eur. Phys. J. 2015, 51, 145. [Google Scholar] [CrossRef] [Green Version]
- Gysbers, P.; Hagen, G.; Holt, J.D.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S.; Schwenk, A.; Stroberg, S.R.; et al. Discrepancy between experimental and theoretical β decay rates resolved from first principles. Nat. Phys. 2018, 15, 428–431. [Google Scholar] [CrossRef]
- Hardy, J.C.; Towner, I.S. The measurement and interpretation of super allowed 0+→0+ nuclear β decay. J. Phys. G Nucl. Part Phys. 2014, 41, 114004. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H. Perspectives on neutrino nuclear-response studies for double beta decays and astro neutrinos. Front. Phys. 2021. to be published. [Google Scholar]
Nuclide | N.a.(%) | Value (keV) | meV | meV | meV |
---|---|---|---|---|---|
Ge | 7.44 | 2039 | 80.8 | 40.4 | 26.7 |
Se | 8.73 | 2997 | 40.0 | 20.0 | 13.3 |
Mo | 9.63 | 3034 | 34.8 | 17.4 | 11.6 |
Cd | 7.49 | 2814 | 36.0 | 18 | 12 |
Te | 33.8 | 2528 | 40.2 | 20.1 | 13.4 |
Xe | 8.9 | 2458 | 40.2 | 20.1 | 13.4 |
Nd | 5.64 | 3371 | 19.8 | 9.9 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejiri, H. Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay. Universe 2020, 6, 225. https://doi.org/10.3390/universe6120225
Ejiri H. Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay. Universe. 2020; 6(12):225. https://doi.org/10.3390/universe6120225
Chicago/Turabian StyleEjiri, Hiroyasu. 2020. "Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay" Universe 6, no. 12: 225. https://doi.org/10.3390/universe6120225
APA StyleEjiri, H. (2020). Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay. Universe, 6(12), 225. https://doi.org/10.3390/universe6120225