Toward Nonlocal Electrodynamics of Accelerated Systems
Abstract
:1. Introduction
Nonlocality of Accelerated Systems
2. Nonlocal Electrodynamics
2.1. Acceleration Tensor
2.2. Acceleration Kernels
3. Parity Violation
4. Matrix Representation
Relations Involving Kernels
5. Influence of the Quadratic Kernel on Helicity-Rotation Coupling
6. Rotating Observer in Constant Electromagnetic Field
7. Linearly Accelerated Observer in Constant Field
8. Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. P and T Invariance in Standard Electrodynamics of Accelerated Systems and Gravitational Fields
Derivation of the Constitutive Relations
References
- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Mashhoon, B. Limitations of spacetime measurements. Phys. Lett. A 1990, 143, 176–182. [Google Scholar] [CrossRef]
- Mashhoon, B. The hypothesis of locality in relativistic physics. Phys. Lett. A 1990, 145, 147–153. [Google Scholar] [CrossRef]
- Maluf, J.W.; Ulhoa, S.C. Electrodynamics in accelerated frames revisited. Ann. Phys. (Berlin) 2010, 522, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Maluf, J.W.; Faria, F.F. The electromagnetic field in accelerated frames. arXiv 2011, arXiv:1110.5367 [gr-qc]. [Google Scholar]
- Mashhoon, B. Nonlocal Gravity; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Mashhoon, B. General covariance and quantum theory. Found. Phys. (Wheeler Festschrift) 1986, 16, 619–635, (Reprinted in Between Quantum and Cosmos; Zurek, W.H., van der Merwe, A., Miller, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1988). [Google Scholar] [CrossRef]
- Hauck, J.C.; Mashhoon, B. Electromagnetic waves in a rotating reference frame. Ann. Phys. (Berlin) 2003, 12, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Modification of the Doppler effect due to the helicity-rotation coupling. Phys. Lett. A 2002, 306, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Ashby, N. Relativity in the Global Positioning System. Living Rev. Relativ. 2003, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.J. A radiation torque experiment. Am. J. Phys. 1966, 34, 1185–1192. [Google Scholar] [CrossRef]
- Mashhoon, B.; Neutze, R.; Hannam, M.; Stedman, G.E. Observable frequency shifts via spin-rotation coupling. Phys. Lett. A 1998, 249, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Kaiser, H. Inertia of intrinsic spin. Physica B 2006, 385–386, 1381–1383. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Electrodynamics in a rotating frame of reference. Phys. Lett. A 1989, 139, 103–108. [Google Scholar] [CrossRef]
- Anderson, J.D.; Mashhoon, B. Pioneer anomaly and the helicity-rotation coupling. Phys. Lett. A 2003, 315, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Optics of rotating systems. Phys. Rev. A 2009, 79, 062111. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photon 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Mashhoon, B. Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 1988, 61, 2639–2642. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Ni, W.-T. Inertial effects of a Dirac particle. Phys. Rev. D 1990, 42, 2045–2048. [Google Scholar] [CrossRef]
- Mashhoon, B. Reply to comment on spin-rotation-gravity coupling. Phys. Rev. Lett. 1992, 68, 3812. [Google Scholar] [CrossRef]
- Soares, I.D.; Tiomno, J. The physics of the Sagnac-Mashhoon effects. Phys. Rev. D 1996, 54, 2808–2813. [Google Scholar] [CrossRef]
- Ryder, L. Relativistic treatment of inertial spin effects. J. Phys. A 1998, 31, 2465–2469. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Papini, G. Spin-1/2 particles in non-inertial reference frames: Low-and high-energy approximations. Nuovo Cimento B 2000, 115, 223–238. [Google Scholar]
- Papini, G. Parity and time reversal in the spin-rotation interaction. Phys. Rev. D 2002, 65, 077901. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.-Q.; He, S.-L. Geometric phases of electrons due to spin-rotation coupling in rotating C60 molecules. Phys. Rev. B 2003, 68, 195421. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Papini, G. Discrete symmetries in the spin-rotation interaction. Phys. Rev. D 2004, 70, 097901. [Google Scholar] [CrossRef]
- Randono, A. Do spinors give rise to a frame-dragging effect? Phys. Rev. D 2010, 81, 024027. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.Y.; Ren, J. Spin-rotation coupling in the teleparallelism description in high speed rotation system. Int. J. Theor. Phys. 2011, 50, 724–728. [Google Scholar] [CrossRef]
- Arminjon, M. On the non-uniqueness problem of the covariant Dirac theory and the spin-rotation coupling. Int. J. Theor. Phys. 2013, 52, 4032–4044. [Google Scholar] [CrossRef] [Green Version]
- Werner, S. Does a neutron know that the earth is rotating? Gen. Relativ. Gravit. 2008, 40, 921–934. [Google Scholar] [CrossRef]
- Rauch, H.; Werner, S.A. Neutron Interferometry, 2nd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Demirel, B.; Sponar, S.; Hasegawa, Y. Measurement of the spin-rotation coupling in neutron polarimetry. New J. Phys. 2015, 17, 023065. [Google Scholar] [CrossRef] [Green Version]
- Danner, A.; Demirel, B.; Sponar, S.; Hasegawa, Y. Development and performance of a miniaturised spin rotator suitable for neutron interferometer experiments. J. Phys. Commun. 2019, 3, 035001. [Google Scholar] [CrossRef]
- Danner, A.; Demirel, B.; Kersten, W.; Wagner, R.; Lemmel, H.; Sponar, S.; Hasegawa, Y. Spin-rotation coupling observed in neutron interferometry. Npj Quantum Inf. 2020, 6, 23. [Google Scholar] [CrossRef]
- Matsuo, M.; Ieda, J.; Saitoh, E.; Maekawa, S. Effects of mechanical rotation on spin currents. Phys. Rev. Lett. 2011, 106, 076601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, M.; Ieda, J.; Saitoh, E.; Maekawa, S. Spin-dependent inertial force and spin current in accelerating systems. Phys. Rev. B 2011, 84, 104410. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, M.; Ieda, J.; Harii, K.; Saitoh, E.; Maekawa, S. Mechanical generation of spin current by spin-rotation coupling. Phys. Rev. B 2013, 87, 180402. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, M.; Ieda, J.; Maekawa, S. Renormalization of spin-rotation coupling. Phys. Rev. B 2013, 87, 115301. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, D.; Basu, B. Effect of spin rotation coupling on spin transport. Ann. Phys. 2013, 339, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Ieda, J.; Matsuo, M.; Maekawa, S. Theory of mechanical spin current generation via spin-rotation coupling. Solid State Commun. 2014, 198, 52–56. [Google Scholar] [CrossRef]
- Papini, G. Spin currents in non-inertial frames. Phys. Lett. A 2013, 377, 960–963. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.; Yoshikawa, T.; Matsuo, M.; Iguchi, R.; Maekawa, S.; Saitoh, E.; Nozaki, Y. Spin current generation using a surface acoustic wave generated via spin-rotation coupling. Phys. Rev. Lett. 2017, 119, 077202. [Google Scholar] [CrossRef] [Green Version]
- Kurimune, Y.; Matsuo, M.; Nozaki, Y. Observation of gyromagnetic spin wave resonance in NiFe films. Phys. Rev. Lett. 2020, 124, 217205. [Google Scholar] [CrossRef]
- Nakata, K.; Takayoshi, S. Optomagnonic Barnett effect. Phys. Rev. B 2020, 102, 094417. [Google Scholar] [CrossRef]
- Kurimune, Y.; Matsuo, M.; Maekawa, S.; Nozaki, Y. Highly nonlinear frequency-dependent spin-wave resonance excited via spin-vorticity coupling. Phys. Rev. B 2020, 102, 174413. [Google Scholar] [CrossRef]
- Schilpp, P.A. Albert Einstein: Philosopher-Scientist; Library of Living Philosophers: Evanston, IL, USA, 1949. [Google Scholar]
- Mashhoon, B. Nonlocal theory of accelerated observers. Phys. Rev. A 1993, 47, 4498–4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashhoon, B. Nonlocal electrodynamics of rotating systems. Phys. Rev. A 2005, 72, 052105. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Nonlocal special relativity. Ann. Phys. (Berlin) 2008, 17, 705–727. [Google Scholar] [CrossRef] [Green Version]
- Bremm, G.N.; Falciano, F.T. Nonlocal effects in black body radiation. Ann. Phys. (Berlin) 2015, 527, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N.; Rosenfeld, L. Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 1933, 12, 8, (English translation: On the question of measurability of electromagnetic field quantities. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1983). [Google Scholar]
- Bohr, N.; Rosenfeld, L. Field and charge measurements in quantum electrodynamics. Phys. Rev. 1950, 78, 794–798. [Google Scholar] [CrossRef]
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Dover: New York, NY, USA, 1959. [Google Scholar]
- Tricomi, F.G. Integral Equations; Interscience: New York, NY, USA, 1957. [Google Scholar]
- Mashhoon, B. Nonlocal Dirac equation for accelerated observers. Phys. Rev. A 2007, 75, 042112. [Google Scholar] [CrossRef] [Green Version]
- Kennard, E.H. On unipolar induction: Another experiment and its significance as evidence for the existence of the æther. Phil. Mag. 1917, 33, 179–190. [Google Scholar] [CrossRef]
- Pegram, G.B. Unipolar induction and electron theory. Phys. Rev. 1917, 10, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Swann, W.F.G. Unipolar induction. Phys. Rev. 1920, 15, 365–398. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B. Nonlocal electrodynamics of accelerated systems. Phys. Lett. A 2007, 366, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Muench, U.; Hehl, F.W.; Mashhoon, B. Acceleration-induced nonlocal electrodynamics in Minkowski spacetime. Phys. Lett. A 2000, 271, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics: Charge, Flux, and Metric; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N.; Rivera, J.P.; Schmid, H. Relativistic analysis of magnetoelectric crystals: Extracting a new 4-dimensional P odd and T odd pseudoscalar from Cr2O3 data. Phys. Lett. A 2008, 372, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Obukhov, Y.N.; Rivera, J.P.; Schmid, H. Relativistic nature of a magnetoelectric modulus of Cr2O3 crystals: A four-dimensional pseudoscalar and its measurement. Phys. Rev. A 2008, 77, 022106. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Obukhov, Y.N.; Rivera, J.P.; Schmid, H. Magnetoelectric Cr2O3 and relativity theory. Eur. Phys. J. B 2009, 71, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Essin, A.M.; Moore, J.E.; Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 2009, 102, 146805. [Google Scholar] [CrossRef] [Green Version]
- Stueckelberg, E.C.G. Violation of parity conservation and general relativity. Phys. Rev. 1957, 106, 388–389. [Google Scholar] [CrossRef]
- Kobzarev, I.Y.; Okun, L.B. Gravitational interaction of fermions. Sov. Phys.–JETP 1963, 16, 1343–1346. [Google Scholar]
- Leitner, J.; Okubo, S. Parity, charge conjugation, and time reversal in the gravitational interaction. Phys. Rev. 1964, 136, B1542–B1546. [Google Scholar] [CrossRef]
- Wineland, D.J.; Ramsey, N.F. Atomic deuterium maser. Phys. Rev. A 1972, 5, 821–837. [Google Scholar] [CrossRef]
- Mashhoon, B. On the coupling of intrinsic spin with the rotation of the earth. Phys. Lett. A 1995, 198, 9–13. [Google Scholar] [CrossRef]
- Mashhoon, B. Gravitational couplings of intrinsic spin. Class. Quantum Gravity 2000, 17, 2399–2409. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Minic, D.; Takeuchi, T. Quantum gravity, torsion, parity violation and all that. Phys. Rev. D 2005, 72, 104002. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Snow, W.M. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion. Phys. Lett. B 2017, 764, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Conroy, A.; Koivisto, T. Parity-violating gravity and GW170817 in non-Riemannian cosmology. J. Cosmol. Astropart. Phys. 2019, 12, 016. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhu, T.; Qiao, J.; Wang, A. Waveform of gravitational waves in the general parity-violating gravities. Phys. Rev. D 2020, 101, 024002. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D.; Ravera, L. Parity violating metric-affine gravity theories. arXiv 2020, arXiv:2009.03328 [gr-qc]. [Google Scholar]
- Obukhov, Y.N. Parity violation in Poincaré gauge gravity. arXiv 2020, arXiv:2010.16276 [gr-qc]. [Google Scholar] [CrossRef]
- Hehl, F.W.; Mashhoon, B. Nonlocal gravity simulates dark matter. Phys. Lett. B 2009, 673, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Hehl, F.W.; Mashhoon, B. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D 2009, 79, 064028. [Google Scholar] [CrossRef] [Green Version]
- Bini, D.; Mashhoon, B. Nonlocal gravity: Conformally flat spacetimes. Int. J. Geom. Meth. Mod. Phys. 2016, 13, 1650081. [Google Scholar] [CrossRef] [Green Version]
- Baekler, P.; Hehl, F.W. Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms. Class. Quantum Gravity 2011, 28, 215017. [Google Scholar] [CrossRef]
- Itin, Y.; Obukhov, Y.N.; Boos, J.; Hehl, F.W. Premetric teleparallel theory of gravity and its local and linear constitutive law. Eur. Phys. J. C 2018, 78, 907. [Google Scholar] [CrossRef]
- Skrotskii, G.V. The influence of gravitation on the propagation of light. Sov. Phys. Doklady 1957, 2, 226–229. [Google Scholar]
- Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- de Felice, F. On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 1971, 2, 347–357. [Google Scholar] [CrossRef]
- Volkov, A.M.; Izmest’ev, A.A.; Skrotskii, G.V. The propagation of electromagnetic waves in a Riemannian space. Sov. Phys. JETP 1971, 32, 686. [Google Scholar]
- Mashhoon, B. Scattering of electromagnetic radiation from a black hole. Phys. Rev. D 1973, 7, 2807–2814. [Google Scholar] [CrossRef]
- Mashhoon, B. Electromagnetic scattering from a black hole and the glory effect. Phys. Rev. D 1974, 10, 1059–1063. [Google Scholar] [CrossRef]
- Mashhoon, B. Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit? Nature 1974, 250, 316. [Google Scholar] [CrossRef]
- Mashhoon, B. Influence of gravitation on the propagation of electromagnetic radiation. Phys. Rev. D 1975, 11, 2679–2684. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashhoon, B. Toward Nonlocal Electrodynamics of Accelerated Systems. Universe 2020, 6, 229. https://doi.org/10.3390/universe6120229
Mashhoon B. Toward Nonlocal Electrodynamics of Accelerated Systems. Universe. 2020; 6(12):229. https://doi.org/10.3390/universe6120229
Chicago/Turabian StyleMashhoon, Bahram. 2020. "Toward Nonlocal Electrodynamics of Accelerated Systems" Universe 6, no. 12: 229. https://doi.org/10.3390/universe6120229
APA StyleMashhoon, B. (2020). Toward Nonlocal Electrodynamics of Accelerated Systems. Universe, 6(12), 229. https://doi.org/10.3390/universe6120229