On the Solution of the Schrödinger Equation with Position-Dependent Mass
Abstract
:1. Introduction
2. The Group SL(2,R)
3. Results
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Barut, A.O.; Raczka, R. Theory of Group Representations and Applications; World Scientific Publishing Co Pte Ltd.: London, UK, 1986. [Google Scholar]
- Iachello, F. Lie Algebras and Applications; Springer-Verlag: Berlin/Heidelberg, Gemany, 2006. [Google Scholar]
- Alhassid, Y.; Gürsey, F.; Iachello, F. Potential scattering, transfer matrix and group theory. Phys. Review Lett. 1983, 50, 873–876. [Google Scholar] [CrossRef]
- Alhassid, Y.; Engel, J.; Wu, J. Algebraic approach to the scattering matrix. Phys. Review Lett. 1984, 53, 17–20. [Google Scholar] [CrossRef]
- Gilmore, R. Lie Groups and Lie Algebras and Some of their Applications; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Frank, A.; Wolf, K.B. Lie algebras for potential scattering. Phys. Rev. Lett. 1984, 52, 1737–1739. [Google Scholar] [CrossRef]
- Iachello, F.; Oss, S. Algebraic methods in quantum mechanics: from molecules to polymers. Eur. Phys. J. D 2002, 19, 307–314. [Google Scholar] [CrossRef]
- Koç, R.; Haydargil, D. Solution of the Schrödinger equation with one and two dimensional double-well potentials. Turk. J. Phys. 2004, 28, 161–167. [Google Scholar]
- von Roos, O. Position-dependent effective masses in semiconductor theory. Phys. Rev. B 1983, 27, 7547–7552. [Google Scholar] [CrossRef]
- Zhu, Q.G.; Kroemer, H. Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 1983, 27, 3519–3527. [Google Scholar] [CrossRef]
- Gora, T.; Williams, F. Theory of electronic states and transport in graded mixed semiconductors. Phys. Rev. 1969, 177, 1179–1182. [Google Scholar] [CrossRef]
- Levy-Leblond, J.-M. Position-dependent effective mass and Galilean invariance. Phys. Rev. A 1995, 52, 1845–1849. [Google Scholar] [CrossRef]
- Roy, B.; Roy, P. A Lie algebraic approach to effective mass Schrödinger equations. J. Phys. A Math. Gen. 2002, 35, 3961–3969. [Google Scholar] [CrossRef]
- Cordero, P.; Ghirardi, G.C. Realizations of Lie algebras and the algebraic treatment of quantum problems. Fortschritte der Physik 1972, 20, 105–133. [Google Scholar] [CrossRef]
- Tezcan, C.; Sever, R. Exact solutions of the Schrödinger equation with position-dependent effective mass via general point canonical transformation. J. Math. Chem. 2007, 42, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Sever, R.; Tezcan, C.; Yeşiltaş, Ö.; Bucurgat, M. Exact solution of effective mass Schrödinger equation for the Hulten potential. Int. J. Theor. Phys. 2008, 47, 2243–2248. [Google Scholar] [CrossRef] [Green Version]
- Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures; Les Editions de Physiques: Les Ulis Cedex, France, 1992. [Google Scholar]
- Serra, L.; Lipparini, E. Spin response of unpolarized quantum dots. Europhys. Lett. 1997, 40, 667–672. [Google Scholar] [CrossRef]
- Puente, A.; Serra, L.; Casas, M. Dipole excitation of Na clusters with a non-local energy density functional. Zeitschhrift für Physik D 1994, 31, 283–286. [Google Scholar] [CrossRef]
- Pozdeeva, E.; Schulze-Halberg, A. Trace formula for Green’s functions of effective mass Schrödinger equations and Nth-order darboux transformations. Int. J. Mod. Phys. A 2008, 23, 2635–2647. [Google Scholar] [CrossRef]
- Koç, R.; Tütüncüler, H. Exact solution of position dependent mass Schrödinger equation by supersymmetric quantum mechanics. Ann. Phys. 2003, 12, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Kerimov, G.A. Exactly solvable position-dependent mass Hamiltonians related to non-compact semi-simple Lie groups. J. Phys. A Math. Theor. 2009, 42, 445210. [Google Scholar] [CrossRef]
- Koç, R.; Koca, M. A systematic study on the exact solution of the position dependent mass Schrödinger equation. J. Phys. A Math. Gen. 2003, 36, 8105–8112. [Google Scholar]
- Cordero, P.; Ghirardi, G.C. Search for quantum systems with a given spectrum-generating algebra: Detailed study of the case SO2,1. Il Nuovo Cim. 1971, 2, 217–236. [Google Scholar] [CrossRef]
- Cordero, P.; Salamo, S. Algebraic solution for the Natanzon confluent potentials. J. Phys. A Math. Gen. 1991, 24, 5299–5305. [Google Scholar] [CrossRef]
- BenDaniel, D.J.; Duke, C.B. Space-Charge effects on electron tunneling. Phys. Rev. 1966, 152, 683–692. [Google Scholar] [CrossRef]
- Quesne, C.; Tkachuk, V.M. Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem. J. Phys. A Math. Gen. 2004, 37, 4267–4281. [Google Scholar] [CrossRef]
- Ghirardi, G.C. On the algebraic structure of a class of solvable quantum problems. Il Nuovo Cimento 1972, 10, 97–120. [Google Scholar] [CrossRef]
- Casimir, H. Über die konslruction einer zu den irreduzibelen darstellungen halbeinfacher kontinuierlicher gruppen gehörigen differenzialgleichung. Proc. Nederl. Akad. Wetensch 1931, 34, 844–846. [Google Scholar]
- Casimir, H.; Van der Waerden. Algebraischer beweis der vollstandigen reduzibilitat der darstellungen halbeinfacher liescher gruppen. Math. Ann. 1935, 111, 1–12. [Google Scholar] [CrossRef]
- Perelomov, A.M.; Popov, V.S. Casmir operators for semisimple Lie groups. Izv. Akad. Nauk, SSSR 1968, 2, 1313–1335. [Google Scholar]
- Racah, G. Group Theory and Spectroscopy, Springer Tracts in Modern Physics. Book Ser. 1965, 37, 28–84. [Google Scholar]
- Vilenkin, N.J.; Klimyk, A.U. Representation of Lie Groups and Special Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; Volumes I, II. [Google Scholar]
- Sezgin, M.; Verdiyev, A.Y.; Verdiyev, Y.A. Various decompositions of the group SL(2,R) and quantum integrable systems. Hadronic J. 1999, 22, 135–144. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1977; Volume 3. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Arıcak, F.; Sezgin, M. Exactly solvable Hamiltonian with position dependent mass related to the group SU(2). Far East J. Appl. Math. 2012, 63, 103–114. [Google Scholar]
- Cordero, P.; Salamo, S. Algebraic solution for the Natanzon hypergeometric potentials. J. Math. Phys. 1994, 35, 3301–3307. [Google Scholar] [CrossRef]
- Wu, J.; Alhassid, Y.; Gürsey, F. Group theory approach to scattering. IV. Solvable potentials associated with SO(2,2). Ann. Phys. 1989, 196, 163–181. [Google Scholar] [CrossRef]
- Natanzon, G.A. Study of the one-dimensional Schrödinger equation generated from the hypergeometric equation. Vestnik. Leningrad Univ. 1971, 10, 22–28. [Google Scholar]
- Kratzer, V.A. Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys. 1920, 3, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Dunkel, J.; Ebeling, W.; Erdmann, U. Coherent motions and clusters in a dissipative morse ring chain. Inter. J. Bifu. Chaos 2002, 12, 2359–2377. [Google Scholar] [CrossRef]
- Sezgin, M.; Verdiyev, A.Y.; Verdiyev, Y.A. Generalized Pöschl-Teller, Toda, Morse potentials and SL(2,R) Group. J. Math. Phys. 1998, 39, 1910–1918. [Google Scholar] [CrossRef]
- Aktaş, M.; Sever, R. Effective mass Schrödinger equation for exactly solvable class of one-dimensional potentials. J. Math. Chem. 2008, 43, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Kuru, Ş.; Negro, J.; Nieto, L.M. A study of the bound states for square potential wells with position-dependent mass. Phys. Lett. A. 2006, 360, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Oppo, G.L.; Politi, A.Z. Toda potential in Laser equations. Phys. B. Condens. Matter 1985, 59, 111–115. [Google Scholar] [CrossRef]
- Setare, M.R.; Karimi, E. Algebraic approach to the Kratzer potential. Phys. Scr. 2007, 75, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Fonda, L.; Ghirardi, G.C. Symmetry Principles in Quantum Physics; Marcel Dekker, Inc.: New York, NY, USA, 1970. [Google Scholar]
- Nikitin, A.G.; Zasadko, T.M. Group classification of Schrödinger equations with position dependent mass. J. Phys. A: Math. Theor. 2016, 49, 365204. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezgin, M. On the Solution of the Schrödinger Equation with Position-Dependent Mass. Universe 2020, 6, 38. https://doi.org/10.3390/universe6030038
Sezgin M. On the Solution of the Schrödinger Equation with Position-Dependent Mass. Universe. 2020; 6(3):38. https://doi.org/10.3390/universe6030038
Chicago/Turabian StyleSezgin, Mehmet. 2020. "On the Solution of the Schrödinger Equation with Position-Dependent Mass" Universe 6, no. 3: 38. https://doi.org/10.3390/universe6030038
APA StyleSezgin, M. (2020). On the Solution of the Schrödinger Equation with Position-Dependent Mass. Universe, 6(3), 38. https://doi.org/10.3390/universe6030038