On the Non Metrizability of Berwald Finsler Spacetimes
Abstract
:1. Introduction
2. Finsler Geometry
2.1. Finsler Spaces
- F is positively homogeneous of degree one with respect to : for all ,
- the matrix:
2.2. Finsler Spacetimes
- , where is the canonical projection;
- conic property: if , then for any .
- L is positively homogeneous of degree two with respect to : for all ,
- on , the vertical Hessian of L, called the L-metric, is nondegenerate,
- there exists a conic subset such that on , , g has Lorentzian signature and, on the boundary , L can be continuously extended as .1
- : the subbundle where L is smooth and is nondegenerate, with fiber , called the set of admissible vectors,
- : the subbundle where L is zero, with fiber ,
- : the subbundle where L can be used for normalization, with fiber ,
- : a maximally connected conic subbundle where and the L-metric exists and has Lorentzian signature , with fiber .
3. Berwald Spacetime Geometry and Metric-Affine Spacetime Geometry with Non-Metricity
3.1. A Necessary Condition for the Metrizability of Berwald Spacetimes
3.2. Non-Metrizable Berwald–Finsler Spacetimes
3.3. Affine Structure of Berwald Spacetimes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Theorem 2
Appendix B. Generalized Bogoslovsky/Kropina–Finsler Lagrangians
- (1)
- : , and L is not defined for ;
- (2)
- : or ;
- (3)
- : , and L is not defined for .
References
- Bogoslovsky, G. A Viable Model of Locally Anisotropic Space-Time and the Finslerian Generalization of the Relativity Theory. Fortschritte Phys. Phys. 1994, 42, 143–193. [Google Scholar] [CrossRef]
- Pfeifer, C. Finsler spacetime geometry in Physics. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1941004. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. 2011, B701, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, C.; Wohlfarth, M.N.R. Finsler geometric extension of Einstein gravity. Phys. Rev. 2012, D85, 064009. [Google Scholar] [CrossRef] [Green Version]
- Fuster, A.; Pabst, C. Finsler pp-waves. Phys. Rev. 2016, D94, 104072. [Google Scholar]
- Gibbons, G.; Gomis, J.; Pope, C. General very special relativity is Finsler geometry. Phys. Rev. 2007, D76, 081701. [Google Scholar] [CrossRef] [Green Version]
- Kouretsis, A.; Stathakopoulos, M.; Stavrinos, P. The General Very Special Relativity in Finsler Cosmology. Phys. Rev. 2009, D79, 104011. [Google Scholar] [CrossRef] [Green Version]
- Lämmerzahl, C.; Perlick, V. Finsler geometry as a model for relativistic gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850166. [Google Scholar] [CrossRef] [Green Version]
- Mavromatos, N.E.; Mitsou, V.A.; Sarkar, S.; Vergou, A. Implications of a Stochastic Microscopic Finsler Cosmology. Eur. Phys. J. 2012, C72, 1956. [Google Scholar] [CrossRef]
- Rutz, S. A Finsler generalisation of Einstein’s vacuum field equations. Gen. Relativ. Gravit. 1993, 25, 1139. [Google Scholar] [CrossRef]
- Stavrinos, P.; Vacaru, O.; Vacaru, S.I. Modified Einstein and Finsler like theories on tangent Lorentz bundles. Int. J. Mod. Phys. D 2014, 23, 1450094. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Pfeifer, C.; Voicu, N. Relativistic kinetic gases as direct sources of gravity. Phys. Rev. 2020, D101, 024062. [Google Scholar] [CrossRef] [Green Version]
- Finsler, P. Über Kurven und Flächen in allgemeinen Räumen. Ph.D. Thesis, Georg-August Universität zu Göttingen, Göttingen, Germany, 1918. [Google Scholar]
- Bao, D.; Chern, S.S.; Shen, Z. An Introduction to Finsler-Riemann Geometry; Springer: New York, NY, USA, 2000. [Google Scholar]
- Miron, R.; Bucataru, I. Finsler Lagrange Geometry; Editura Academiei Romane: Bucharest, Romania, 2007. [Google Scholar]
- Beem, J.K. Indefinite Finsler spaces and timelike spaces. Can. J. Math. 1970, 22, 1035. [Google Scholar] [CrossRef]
- Lammerzahl, C.; Perlick, V.; Hasse, W. Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. 2012, D86, 104042. [Google Scholar] [CrossRef] [Green Version]
- Javaloyes, M.A.; Sánchez, M. On the definition and examples of cones and Finsler spacetimes. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas 2019, 114, 30. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Pfeifer, C.; Voicu, N. Finsler gravity action from variational completion. Phys. Rev. 2019, D100, 064035. [Google Scholar] [CrossRef] [Green Version]
- Minguzzi, E. The connections of pseudo-Finsler spaces. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1460025. [Google Scholar] [CrossRef] [Green Version]
- Tavakol, R. Geometry of spacetime and Finsler geometry. Int. J. Mod. Phys. A 2009, 24, 1678–1685. [Google Scholar] [CrossRef]
- Tavakol, R.; Van Den Bergh, N. Finsler spaces and the underlying geometry of space-time. Phys. Lett. A 1985, 112, 23–25. [Google Scholar] [CrossRef]
- Fuster, A.; Pabst, C.; Pfeifer, C. Berwald spacetimes and very special relativity. Phys. Rev. 2018, D98, 084062. [Google Scholar] [CrossRef] [Green Version]
- Szilasi, J.; Lovas, R.L.; Kertész, D.C. Several ways to Berwald Manifolds—and some steps beyond. Extr. Math. 2011, 26, 89–130. [Google Scholar]
- Torromé, R.G. On singular generalized Berwald spacetimes and the equivalence principle. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750091. [Google Scholar] [CrossRef] [Green Version]
- Berwald, L. Untersuchung der Krümmung allgemeiner metrischer Räume auf Grund des in ihnen herrschenden Parallelismus. Math. Z. 1926, 25, 40–73. [Google Scholar] [CrossRef]
- Szabó, Z. Positive definite Berwald spaces. Tensor New Ser. 1981, 35, 25–39. [Google Scholar]
- Crampin, M. On the construction of Riemannian metrics for Berwald spaces by averaging. Houst. J. Math. 2014, 40, 737–750. [Google Scholar]
- Riemann, B. Über die Hypothesen, welche der Geometrie zu Grunde liegen. Abh. Der Königlichen Ges. Der Wiss. Zu Göttingen 1868, 13, 133–150. [Google Scholar]
- Javaloyes, M.A. Good connections and curvature computations in Finsler Geometry. arXiv 2019, arXiv:1904.07178. [Google Scholar]
- Bernal, A.; Javaloyes, M.A.; Sánchez, M. Foundations of Finsler spacetimes from the Observers’ Viewpoint. Universe 2020, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.G.; Glashow, S.L. Very special relativity. Phys. Rev. Lett. 2006, 97, 021601. [Google Scholar] [CrossRef] [Green Version]
- Kropina, V. On projective two-dimensional Finsler spaces with a special metric. Tr. Sem. Vektor. Tenzor. Anal. 1961, 11, 277–292. [Google Scholar]
- García-Parrado Gómez-Lobo, A.; Minguzzi, E. Pseudo-Finsler spaces modeled on a pseudo-Minkowski space. Rept. Math. Phys. 2018, 82, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Elbistan, M.; Zhang, P.M.; Gibbons, G.; Horvathy, P. Geodesic motion in Bogoslovsky-Finsler Plane Gravitational Waves. arXiv 2020, arXiv:2004.02751. [Google Scholar]
- Pfeifer, C.; Heefer, S.; Fuster, A. Identifying Berwald–Finsler Geometries. arXiv 2019, arXiv:1909.05284. [Google Scholar]
- Hehl, F.W.; McCrea, J.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Percacci, R.; Sezgin, E. A New Class of Ghost and Tachyon Free Metric Affine Gravities. Phys. Rev. D 2020, 101, 084040. [Google Scholar] [CrossRef] [Green Version]
- Percacci, R. Towards Metric-Affine Quantum Gravity. arXiv 2020, arXiv:2003.09486. [Google Scholar] [CrossRef] [Green Version]
- Krssak, M.; van den Hoogen, R.; Pereira, J.; Böhmer, C.; Coley, A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhao, X.; Chee, G. Cosmology in symmetric teleparallel gravity and its dynamical system. Eur. Phys. J. C 2019, 79, 530. [Google Scholar] [CrossRef] [Green Version]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Barros, B.J.; Barreiro, T.; Koivisto, T.; Nunes, N.J. Testing F(Q) gravity with redshift space distortions. arXiv 2020, arXiv:2004.07867. [Google Scholar]
- Voicu, N. Volume forms for time orientable Finsler spacetimes. J. Geom. Phys. 2017, 112, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Deicke, A. Über die Finsler-Räume mit Ai=0. Arch. Math. 1953, 4, 45–51. [Google Scholar] [CrossRef]
- Chern, S.S.; Chen, W.S.; Lam, K.S. Lectures on Differential Geometry; World Scientific: Singapore, 1999. [Google Scholar]
1. | It is possible to formulate this property equivalently with the opposite sign of L and the metric of signature . We fixed the signature and sign of L here to simplify the discussion. |
2. | We will elaborate on this in forthcoming work. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuster, A.; Heefer, S.; Pfeifer, C.; Voicu, N. On the Non Metrizability of Berwald Finsler Spacetimes. Universe 2020, 6, 64. https://doi.org/10.3390/universe6050064
Fuster A, Heefer S, Pfeifer C, Voicu N. On the Non Metrizability of Berwald Finsler Spacetimes. Universe. 2020; 6(5):64. https://doi.org/10.3390/universe6050064
Chicago/Turabian StyleFuster, Andrea, Sjors Heefer, Christian Pfeifer, and Nicoleta Voicu. 2020. "On the Non Metrizability of Berwald Finsler Spacetimes" Universe 6, no. 5: 64. https://doi.org/10.3390/universe6050064
APA StyleFuster, A., Heefer, S., Pfeifer, C., & Voicu, N. (2020). On the Non Metrizability of Berwald Finsler Spacetimes. Universe, 6(5), 64. https://doi.org/10.3390/universe6050064