Significance of Black Hole Visualization and Its Implication for Science Education Focusing on the Event Horizon Telescope Project
Abstract
:1. Introduction
2. Research Method
2.1. Analysis Tool
2.2. Data Collection and Analysis
3. Two Black Hole Visualization Processes
3.1. Black Hole Visualization Based on Theory
3.2. Black Hole Visualization through Real-World Observation
3.2.1. Visualization of Black Holes Based on Real-World Observation Before the EHT Project
3.2.2. Visualization of the Black Hole Center through the EHT Project
4. Comparison of Visualization between Theoretical Prediction and Actual Observation
5. Educational Significance
- The images obtained via the EHT project are not the only images of the black holes. For a substantially long period of time, scientists have predicted and studied black hole images based on scientific theories. In science, simulation based on theories is as important as actual observation.
- The images obtained via the EHT project required a complex data transformation process. They are the result of creating whole images from partial images, through various comparisons and evaluations, in which many theories are involved. These images were not obtained from direct visual observations using telescopes with high magnifications.
- The images obtained via the EHT project are compared with the characteristics and images of black holes predicted using theories and are used to evaluate the appropriateness of the existing theories on black holes. The results of real-world observations influence the creation and modification of theories.
- The images obtained via the EHT project are not the final images of black holes; rather, they enable various subsequent studies on black holes. The black hole images obtained via the EHT project are the products of scientific research and a stepping stone that enables further research.
Author Contributions
Funding
Conflicts of Interest
References
- EHT Collaboration. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Giere, R.N.; Bickle, J.; Mauldi, R.F. Understanding Scientific Reasoning; Thomson Wadsworth: Melbourne, VIC, Australia, 2006. [Google Scholar]
- Thorne, K. Black Holes & Time Warps: Einstein’s Outrageous Legacy; WW Norton & Company: New York, NY, USA, 1995. [Google Scholar]
- Park, S. Einstein and Hawking’s Black Hole; Whistler: Seoul, Korea, 2005. [Google Scholar]
- Woo, J. Prof. Woo’s Black Hole Lecture; Gimm-Young Publishers, Inc.: Seoul, Korea, 2019. [Google Scholar]
- Luminet, J.P. An illustrated history of black hole imaging: Personal recollections (1972–2002). arXiv 2019, arXiv:1902.11196. [Google Scholar]
- Ramakrishnan, V. Seeing is believing. Resonance 2019, 24, 529–534. [Google Scholar] [CrossRef]
- Falcke, H. Imaging black holes: Past, present and future. J. Phys. Conf. Ser. 2017, 942, 012001. [Google Scholar] [CrossRef]
- EHT Collaboration. First M87 Event Horizon Telescope results. II. Array and instrumentation. Astrophys. J. Lett. 2019, 875, L2. [Google Scholar] [CrossRef]
- EHT Collaboration. First M87 Event Horizon Telescope results. III. Data processing and calibration. Astrophys. J. Lett. 2019, 875, L3. [Google Scholar] [CrossRef]
- EHT Collaboration. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- EHT Collaboration. First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar] [CrossRef]
- EHT Collaboration. First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar] [CrossRef]
- Schwarzschild, K. Über das Gravitationsfeld eines massenpunktes nach der Einsteinschen theorie. Sitz. Deut. Akad. Wiss. Math. Phys. Berlin 1916, 18, 189–196. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Page, D.N.; Thorne, K.S. Disk-accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys. J. 1974, 191, 499–506. [Google Scholar] [CrossRef]
- Fukue, J.; Yokoyama, T. Color photographs of an accretion disk around a black hole. Publ. Astron. Soc. Japan 1988, 40, 15–24. [Google Scholar]
- Bardeen, J.M. Timelike and null geodesics in the Kerr metric. In Black Holes (Les Astres Occlus); Dewitt, C., Dewitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Müller, T.; Weiskopf, D. Distortion of the stellar sky by a Schwarzschild black hole. Am. J. Phys. 2010, 78, 204–214. [Google Scholar] [CrossRef]
- Riazuelo, A. Seeing relativity-I: Ray tracing in a Schwarzschild metric to explore the maximal analytic extension of the metric and making a proper rendering of the stars. Int. J. Mod. Phys. D 2019, 28, 1950042. [Google Scholar] [CrossRef]
- Luminet, J.P. Black Holes; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Cunningham, C.T.; Bardeen, J.M. The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 1973, 183, 237–264. [Google Scholar] [CrossRef]
- Luminet, J.-P. Image of a spherical black hole with thin accretion disk Astron. Astron. Astrophys. 1979, 75, 228–235. [Google Scholar]
- Viergutz, S.U. Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 1993, 272, 355–377. [Google Scholar]
- James, O.; Von Tunzelmann, E.; Franklin, P.; Thorne, K.S. Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar. Class. Quantum Gravity 2015, 32, 065001. [Google Scholar] [CrossRef]
- Dexter, J.; McKinney, J.C.; Agol, E. The size of the jet launching region in M87. Mon. Not. R. Astron. Soc. 2012, 421, 1517–1528. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H. General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys. 2016, 586, A38. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E.; Rúnarsson, H.F. Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 2015, 115, 211102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, R.; Kocherlakota, P.; Narayan, R.; Joshi, P.S. Shadows of spherically symmetric black holes and naked singularities. Mon. Not. R. Astron. Soc. 2019, 482, 52–64. [Google Scholar] [CrossRef]
- Giddings, S.B.; Psaltis, D. Event horizon telescope observations as probes for quantum structure of astrophysical black holes. Phys. Rev. D 2018, 97, 084035. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T.; Psaltis, D.; Gillessen, S.; Marrone, D.P.; Özel, F.; Doeleman, S.S.; Fish, V.L. Masses of nearby supermassive black holes with very long baseline interferometry. Astrophys. J. 2012, 758, 30. [Google Scholar] [CrossRef] [Green Version]
- Messier, C. Catalogue des Nébuleuses et des Amas d’Étoiles (Catalog of Nebulae and Star Clusters); L’Imprimerie Royale: Paris, France, 1781. [Google Scholar]
- Curtis, H.D. Descriptions of 762 nebulae and clusters photographed with the crossley reflector. Pub. Lick Obs. 1918, 13, 9–42. [Google Scholar]
- Smith, F.G. An accurate determination of the positions of four radio stars. Nature 1951, 168, 555. [Google Scholar] [CrossRef]
- Macdonald, G.H.; Kenderdine, S.; Neville, A.C. Observations of the structure of radio sources in the 3C catalogue—I. Mon. Not. R. Astron. Soc. 1968, 138, 259–311. [Google Scholar] [CrossRef] [Green Version]
- Hogg, D.E.; MacDonald, G.H.; Conway, R.G.; Wade, C.M. Synthesis of brightness distribution in radio sources. Astron. J. 1969, 74, 1206–1213. [Google Scholar] [CrossRef]
- Turland, B.D. Observations of M87 at 5 GHz with the 5-km telescope. Mon. Not. R. Astron. Soc. 1975, 170, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Hines, D.C.; Owen, F.N.; Eilek, J.A. Filaments in the radio lobes of M87. Astrophys. J. 1989, 347, 713–726. [Google Scholar] [CrossRef]
- Högbom, J.A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 1974, 15, 417–426. [Google Scholar]
- Clark, B.G. An efficient implementation of the algorithm ‘CLEAN’. Astron. Astrophys. 1980, 89, 377–878. [Google Scholar]
- Gull, S.F.; Northover, K.J.E. Bubble model of extragalactic radio sources. Nature 1973, 244, 80–83. [Google Scholar] [CrossRef]
- Whitney, A.R.; Cappallo, R.; Aldrich, W.; Anderson, B.; Bos, A.; Casse, J.; Goodman, J.; Parsley, S.; Pogrebenko, S.; Schilizzi, R.; et al. Mark 4 VLBI correlator: Architecture and algorithms. Radio Sci. 2004, 39, 1–24. [Google Scholar] [CrossRef]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA architecture and applications. ASP Conf. Ser. 2007, 376, 127–130. [Google Scholar]
- Greisen, E.W. The FITS interferometry data interchange convention—Revised. AIPS Memo Ser. 2016, 114, 1–59. [Google Scholar]
- Thiébaut, É. Principles of image reconstruction in interferometry. EAS Publ. Ser. 2013, 59, 157–187. [Google Scholar] [CrossRef]
- Shepherd, M. Difmap: Synthesis Imaging of Visibility Data; ascl: 1103.001. ASCL: Leicester, UK, 2011. Available online: http://ascl.net/1103.001 (accessed on 11 April 2020).
- Chael, A.; Bouman, K.; Johnson, M.; Wielgus, M.; Blackburn, L.; Chan, C.; Farah, J.R.; Palumbo, D.; Pesce, D. eht-imaging: v1.1.0: Imaging Interferometric Data with Regularized Maximum Likelihood. Available online: https://zenodo.org/record/2614016#.XspLf8ARVPY (accessed on 24 May 2020).
- Akiyama, K.; Tazaki, F.; Moriyama, K.; Cho, I.; Ikeda, S.; Sasada, M.; Okino, H.; Honma, M. SMILI: Sparse Modeling Imaging Library for Interferometry. Available online: https://zenodo.org/record/2616725#.XsuzR2gzaUk (accessed on 24 May 2020).
- Young, A.J.; Wilson, A.S.; Mundell, C.G. Chandra imaging of the X-ray core of the Virgo cluster. Astrophys. J. 2002, 579, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, F.; Falcke, H.; Brinkerink, C.; Mościbrodzka, M.; Gurvits, L.I.; Martin-Neira, M.; Kudriashov, V.; Klein-Wolt, M.; Tilanus, R.; Kramer, M.; et al. Simulations of imaging the event horizon of Sagittarius A* from space. Astron. Astrophys. 2019, 625, A124. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Kim, I.G.; Kim, J.K.; Kim, J.B.; Park, B.Y.; Jung, H.J.; Hanh, I. Physics II; Kyohaksa: Seoul, Korea, 2018. [Google Scholar]
- Kim, S.W.; Shin, S.; Oh, K.; Lee, S.K.; Lee, Y.; Jang, J. Physics II; Jihaksa: Seoul, Korea, 2018. [Google Scholar]
- Lee, K.Y.; Kim, H.S.; Park, J.; Lee, S.M.; Jeong, J.H.; Choi, Y. Earth Science I; Visang: Seoul, Korea, 2018. [Google Scholar]
- Lemke, J. Multiplying meaning: Visual and verbal semiotics. In Scientific Text Reading Science: Critical and Functional Perspectives on Discourses of Science; Martin, J.R., Veel, R., Eds.; Routledge: London, UK, 1998. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.-G.; Park, J.; Lee, I. Significance of Black Hole Visualization and Its Implication for Science Education Focusing on the Event Horizon Telescope Project. Universe 2020, 6, 70. https://doi.org/10.3390/universe6050070
Yoon H-G, Park J, Lee I. Significance of Black Hole Visualization and Its Implication for Science Education Focusing on the Event Horizon Telescope Project. Universe. 2020; 6(5):70. https://doi.org/10.3390/universe6050070
Chicago/Turabian StyleYoon, Hye-Gyoung, Jeongwoo Park, and Insun Lee. 2020. "Significance of Black Hole Visualization and Its Implication for Science Education Focusing on the Event Horizon Telescope Project" Universe 6, no. 5: 70. https://doi.org/10.3390/universe6050070
APA StyleYoon, H. -G., Park, J., & Lee, I. (2020). Significance of Black Hole Visualization and Its Implication for Science Education Focusing on the Event Horizon Telescope Project. Universe, 6(5), 70. https://doi.org/10.3390/universe6050070