Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy vs. Anisotropy
Abstract
:1. Introduction
2. RG Analysis of the HK Model without Turbulent Advection
3. Renormalization of the Model with Turbulent Advection
4. Fixed Points of the Model with Turbulent Advection
5. Scaling Regimes and Critical Dimensions in the Model with Turbulent Advection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HK | Hwa–Kardar |
IR | infrared |
MS | mimimal subtraction |
NS | Navier–Stokes |
RG | renormalization group |
SOC | self-organized criticality |
UV | ultraviolet |
References
- Amit, D.J. Field Theory, Renormalization Group, and Critical Phenomena, 2nd ed.; World Scientific: Singapore, 1984. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Vasiliev, A.N. The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381. [Google Scholar] [CrossRef]
- Tang, C.; Bak, P. Critical exponents and scaling relations for self-organized critical phenomena. Phys. Rev. Lett. 1988, 60, 2347. [Google Scholar] [CrossRef] [Green Version]
- Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Phys. Rev. Lett. 1993, 71, 4083. [Google Scholar]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996. [Google Scholar]
- Jensen, H.J. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems; Cambridge University Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Turcotte, D.L. Self-Organized Criticality. Rep. Prog. Phys. 1999, 62, 1377. [Google Scholar] [CrossRef]
- Pruessner, G. Self-Organized Criticality: Theory, Models and Characterisation; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Watkins, N.W.; Pruessner, G.; Chapman, S.C.; Crosby, N.B.; Jensen, H.J. 25 Years of Self-organized Criticality: Concepts and Controversies. Space Sci. Rev. 2016, 198, 3. [Google Scholar] [CrossRef]
- Munoz, M.A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 2018, 90, 031001. [Google Scholar] [CrossRef] [Green Version]
- Markovic, D.; Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 2014, 536, 41. [Google Scholar] [CrossRef] [Green Version]
- Aschwanden, M.J. Self-Organized Criticality Systems; Open Academic Press: Berlin, Germany; Warsaw, Poland, 2013. [Google Scholar]
- Ellis, G.F.R.; Kopel, J. The dynamical emergence of biology from physics: Branching causation via biomolecules. Front. Physiol. 2019, 9, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, T.; Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 2011, 144, 268. [Google Scholar] [CrossRef] [Green Version]
- Hesse, J.; Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014, 8, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquale, V.; Massobrio, P.; Bologna, L.L.; Chiappalone, M.; Martinoia, S. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 2008, 153, 1354. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, J.G.; Soriano, J.; Alvarez-Lacalle, E.; Teller, S.; Casademunt, J. Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys. 2013, 9, 582. [Google Scholar] [CrossRef]
- Timme, N.M.; Marshall, N.J.; Bennett, N.; Ripp, M.; Lautzenhiser, E.; Beggs, J.M. Criticality maximizes complexity in neural tissue. Front. Physiol. 2016, 7, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossio, F.Y.K.; Goedeke, S.; van den Akker, B.; Ibarz, B.; Memmesheimer, R.-M. Growing Critical: Self-Organized Criticality in a Developing Neural System. Phys. Rev. Lett. 2018, 121, 058301. [Google Scholar] [CrossRef] [Green Version]
- Levina, A.; Herrmann, J.M.; Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 2007, 3, 857. [Google Scholar] [CrossRef]
- Tadić, B.; Mitrovic Dankulov, M.; Melnik, R. Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. E 2017, 96, 032307. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B. Self-organised criticality and emergent hyperbolic networks: Blueprint for complexity in social dynamics. Eur. J. Phys. 2019, 40, 024002. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B.; Gligorijevic, V.; Mitrovic, M.; Suvakov, M. Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 2013, 15, 5084. [Google Scholar] [CrossRef]
- Suvakov, M.; Tadić, B. Collective emotion dynamics in chats with agents, moderators and bots. Condens. Matter Phys. 2014, 17, 33801. [Google Scholar] [CrossRef]
- Holovatch, Y.; Mrygold, O.; Szell, M.; Thurner, S. Math Meets Myths: Quantitative Approaches to Ancient Narratives; Kenna, R., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kou, G.; Zhao, Y.; Peng, Y.; Shi, Y. Multi-level opinion dynamics under bounded confidence. PLoS ONE 2012, 7, e43507. [Google Scholar] [CrossRef] [Green Version]
- Torres-Rojo, J.M.; Bahena-González, R. Scale invariant behavior of cropping area losses. Agric. Syst. 2018, 165, 33. [Google Scholar] [CrossRef]
- Tonello, L.; Giacobbi, L.; Pettenon, A.; Scuotto, A.; Cocchi, M.; Gabrielli, F.; Cappello, G. Crisis behavior in autism spectrum disorders: A self-organized criticality approach. Complexity 2018, 2018, 5128157. [Google Scholar] [CrossRef]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. 1977, 16, 732. [Google Scholar] [CrossRef] [Green Version]
- Kardar, M.; Parisi, G.; Zhang, Y.-C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett 1986, 56, 889. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Das, A.; Pradhan, P. Hydrodynamics, density fluctuations, and universality in conserved stochastic sandpiles. Phys. Rev. E 2018, 97, 062142. [Google Scholar] [CrossRef] [Green Version]
- Le Doussal, P.; Wiese, K.J. Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media. Phys. Rev. Lett. 2015, 114, 110601. [Google Scholar] [CrossRef] [Green Version]
- Wiese, K.J. Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles. Phys. Rev. E 2016, 93, 042117. [Google Scholar] [CrossRef] [Green Version]
- Hwa, T.; Kardar, M. Dissipative transport in open systems: An investigation of self-organized criticality. Phys. Rev. Lett. 1989, 62, 1813. [Google Scholar] [CrossRef]
- Hwa, T.; Kardar, M. Avalanches, hydrodynamics and great events in models of sandpiles. Phys. Rev. A 1992, 45, 7002. [Google Scholar] [CrossRef]
- Tadić, B. Disorder-induced critical behavior in driven diffusive systems. Phys. Rev. E 1998, 58, 168. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Rothman, D.H. Stochastic Equation for the Erosion of Inclined Topography. Phys. Rev. Lett. 1998, 80, 4349. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Rothman, D.H. Scaling of a slope: The erosion of tilted landscapes. J. Stat. Phys. 1998, 93, 477. [Google Scholar] [CrossRef]
- Lebedev, N.M.; Kakin, P.I. Critical behavior of certain non-equilibrium systems with a quenched random noise. Vestn. St. Petersburg Univ. Ser. Phys. Chem. 2017, 4, 398. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. Static approach to renormalization group analysis of stochastic models with spatially quenched disorder. J. Stat. Phys. 2020, 178, 392. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Serov, V.D. Effects of Turbulent Environment and Random Noise on Self-Organized Critical Behavior: Universality vs. Nonuniversality. arXiv 2020, arXiv:2005.04756. [Google Scholar]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Serov, V.D. Universality Classes of the Hwa-Kardar Model with Turbulent Advection. In EPJ Web of Conferences; EDP Sciences: Ulis, France, 2020; Volume 226, p. 02002. [Google Scholar]
- Satten, G.; Ronis, D. Critical phenomena in randomly stirred fluids. Phys. Rev. Lett. 1985, 55, 91. [Google Scholar] [CrossRef]
- Satten, G.; Ronis, D. Critical phenomena in randomly stirred fluids: Correlation functions, equation of motion, and crossover behavior. Phys. Rev. A 1986, 33, 3415. [Google Scholar] [CrossRef]
- Onuki, A.; Yamazaki, K.; Kawasaki, K. Light scattering by critical fluids under shear flow. Ann. Phys. 1981, 131, 217. [Google Scholar] [CrossRef]
- Onuki, A.; Kawasaki, K. Critical phenomena of classical fluids under flow. I: Mean field approximation. Progr. Theor. Phys. 1980, 63, 122. [Google Scholar] [CrossRef]
- Beysens, D.; Gbadamassi, M.; Boyer, L. Light-scattering study of a critical mixture with shear flow. Phys. Rev. Lett. 1979, 43, 1253. [Google Scholar] [CrossRef]
- Ruiz, R.; Nelson, D.R. Turbulence in binary fluid mixtures. Phys. Rev. A 1981, 23, 3224. [Google Scholar] [CrossRef]
- Aronowitz, A.; Nelson, D.R. Turbulence in phase-separating binary mixtures. Phys. Rev. A 1984, 29, 2012. [Google Scholar] [CrossRef]
- Antonov, N.V.; Hnatich, M.; Honkonen, J. Effects of mixing and stirring on the critical behavior. J. Phys. A Math. Gen. 2006, 39, 7867. [Google Scholar] [CrossRef]
- Antonov, N.V.; Ignatieva, A.A. Critical behavior of a fluid in a random shear flow: Renormalization group analysis of a simplified model. J. Phys. A Math. Gen. 2006, 39, 13593. [Google Scholar] [CrossRef]
- Antonov, N.V.; Iglovikov, V.I.; Kapustin, A.S. Effects of turbulent mixing on the nonequilibrium critical behavior. J. Phys. A Math. Theor. 2008, 42, 135001. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Kapustin, A.S.; Malyshev, A.V. Effects of turbulent transfer on the critical behavior. Theor. Math. Phys. 2011, 169, 1470. [Google Scholar] [CrossRef] [Green Version]
- Falkovich, G.; Gawȩdzki, K.; Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 2001, 73, 913. [Google Scholar] [CrossRef]
- Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Ziad, A.; Schöck, M.; Chanan, G.; Troy, M.; Dekany, R.G.; Lane, B.F.; Borgnino, J.; Martin, F. From the grating scale monitor to the generalized seeing monitor. Appl. Opt. 2004, 43, 2316. [Google Scholar] [CrossRef] [Green Version]
- Kulikov, V.A.; Andreeva, M.S.; Koryabin, A.V.; Shmalhausen, V.I. Method of estimation of turbulence characteristic scales. Appl. Opt. 2012, 51, 8505. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V. Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field. Phys. Rev. E 1999, 60, 6691. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V. Anomalous scaling of a passive scalar advected by the synthetic compressible flow. Physica D 2000, 144, 370. [Google Scholar] [CrossRef] [Green Version]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; Elsevier B.V.: North Holland, The Netherlands, 2007. [Google Scholar]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Antonov, N.V.; Kakin, P.I. Effects of random environment on a self-organized critical system: Renormalization group analysis of a continuous model. In EPJ Web of Conferences; EDP Sciences: Ulis, France, 2016; Volume 108, p. 02009. [Google Scholar]
- Avellaneda, M.; Majda, A. Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 1990, 131, 381. [Google Scholar] [CrossRef]
- Avellaneda, M.; Majda, A. Mathematical models with exact renormalization for turbulent transport II: Non-Gaussian statistics, fractal interfaces, and the sweeping effect. Commun. Math. Phys. 1992, 146, 139. [Google Scholar] [CrossRef]
- Stell, G. Weak-Scaling Theory. Phys. Rev. Lett. 1970, 24, 1343. [Google Scholar] [CrossRef] [Green Version]
- Stell, G. Some Implications of Weak-Scaling Theory. Phys. Rev. B 1970, 2, 2811. [Google Scholar] [CrossRef]
- Stell, G. “Weak Scaling” Enrico Fermi School of “Critical Phenomena”; Course, L.I., Green, M.S., Eds.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Fisher, M. “The Theory of Critical Point Singularities” Enrico Fermi School of “Critical Phenomena”; Course, L.I., Green, M.S., Eds.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Antonov, N.V. Renormalization of composite operators and operator product expansion in stochastic hydrodynamics. Vestn. St. Petersburg Univ. Ser. Phys. Chem. 1992, 3, 3. [Google Scholar]
- Antonov, N.V. Composite operators and Galilean invariance in stochastic hydrodynamics. Vestn. St. Petersburg Univ. Ser. Phys. Chem. 1992, 4, 6. [Google Scholar]
- Adzhemyan, L.T.; Antonov, N.V.; Kim, T.L. Composite operators, short–distance expansion and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to the Kolmogorov’s scaling. Theor. Math. Phys. 1994, 100, 382. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. The Kardar–Parisi–Zhang model of a random kinetic growth: Effects of a randomly moving medium. J. Phys. A Math. Theor. 2019, 52, 505002. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, D.I.; Shirkov, D.V.; Tarasov, O.V. Analytic continuation of the results of perturbation theory for the model gϕ4 to the region g≥1. Theor. Math. Phys. 1979, 38, 9. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I. Random interface growth in a random environment: Renormalization group analysis of a simple model. Theor. Math. Phys. 2015, 185, 1391. [Google Scholar] [CrossRef]
- Adzhemyan, L.T.; Antonov, N.V.; Vasiliev, A.N. Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar. Phys. Rev. E 1998, 58, 1823. [Google Scholar] [CrossRef] [Green Version]
1 | Traditionally, the nonlinear term has a coupling constant as a prefactor. Here, the fields and the parameters were scaled to make this factor equal to unity (the coupling constant, thus, appears in the amplitude of the correlation function for the random noise f). |
2 | The equivalence means that the correlation and response functions of the problem (1) and (2) can be identified with various Green functions of the field theory with the action (4). In other words, the correlation functions are represented by the functional averages over the initial field h and the auxiliary (response) field with the weight ; for more details, see [3]. |
3 | This corresponds to a real experimental setup, where for any specific material both diffusivity coefficients and (which is related to the characteristic intermolecular distance or some other microscopic length scale) are fixed. |
4 | As we will see in Section 5, such an exclusion is not always possible: it requires some balance between the numbers of IR relevant and IR irrelevant parameters and the number of independent scaling equations. |
5 | That was not the case in the pure HK model, because the ratio was not dimensionless with respect to two possible momentum dimensions separately. |
6 | Since and have the same dimensions, it is not possible at this point to determine which one (or both) should be used in the definition (26). This situation differs from Equation (8) where and have different canonical dimensions and, therefore, the exponents are strictly defined. For simplicity, let us define the same way we did in Section 2 and define using Equation (26). The results do not depend on the specific realization of this arbitrariness. |
7 | To simplify the notation, here and below we redefine the coupling constants: and , where is the unit sphere area in the d-dimensional space. |
8 | Our analysis is based on the perturbative expansion in g and x. Thus, we do not try to consider possible fixed points with or . In this connection we note that is not a fixed point for the model, where the large-g behavior of the function is known [75]. |
F | h | g | ,m, | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | ||
2 | 0 | 0 | 0 | 0 | |||||
0 | 0 | 2 | 0 | 1 | |||||
0 | 0 | 1 | |||||||
1 | 0 | 0 | 0 | 0 | 1 |
F | h | v | ,u | g,x | , m, | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 1 | ||||||||||
1 | 0 | 0 | 1 | 0 | 0 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Kochnev, G.E. Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy vs. Anisotropy. Universe 2020, 6, 145. https://doi.org/10.3390/universe6090145
Antonov NV, Gulitskiy NM, Kakin PI, Kochnev GE. Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy vs. Anisotropy. Universe. 2020; 6(9):145. https://doi.org/10.3390/universe6090145
Chicago/Turabian StyleAntonov, Nikolay V., Nikolay M. Gulitskiy, Polina I. Kakin, and German E. Kochnev. 2020. "Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy vs. Anisotropy" Universe 6, no. 9: 145. https://doi.org/10.3390/universe6090145
APA StyleAntonov, N. V., Gulitskiy, N. M., Kakin, P. I., & Kochnev, G. E. (2020). Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy vs. Anisotropy. Universe, 6(9), 145. https://doi.org/10.3390/universe6090145