Visible Shapes of Black Holes M87* and SgrA*
Abstract
:1. Introduction
2. Classical Black Hole Shadow: Black Hole Highlighting by Distant Luminous Background
3. Photon Spheres
4. Event Horizon Silhouette: Black Hole Highlighting by Accretion Disk
5. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EHT | Event Horizon Telescope |
References
- Akiyama, K.; Alberdi, A.; The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. 2019, 875, L1. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. 2019, 875, L2. [Google Scholar]
- Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; Blackburn, L.; Boland, W.; Bouman, K.L.; Bower, G.C.; et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. 2019, 875, L3. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. 2019, 875, L4. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. 2019, 875, L5. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. 2019, 875, L6. [Google Scholar]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Fish, V.L.; Akiyama, K.; Bouman, K.L.; Chael, A.A.; Johnson, M.D.; Doeleman, S.S.; Blackburn, L.; Wardle, J.F.; Freeman, W.T.; The Event Horizon Telescope Collaboration. Observing—And Imaging—Active Galactic Nuclei with the Event Horizon Telescope. Galaxies 2016, 4, 54. [Google Scholar] [CrossRef]
- Lacroix, T.; Silk, J. Constraining the distribution of dark matter at the Galactic centre using the high-resolution Event Horizon Telescope. Astron. Astrophys. 2013, 554, A36. [Google Scholar] [CrossRef] [Green Version]
- Kamruddin, A.B.; Dexter, J. A geometric crescent model for black hole images. Mon. Not. R. Astron. Soc. 2013, 434, 765–771. [Google Scholar] [CrossRef]
- Johannsen, T.; Broderick, A.E.; Plewa, P.M.; Chatzopoulos, S.; Doeleman, S.S.; Eisenhauer, F.; Fish, V.L.; Genzel, R.; Gerhard, O.; Johnson, M.D. Testing General Relativity with the Shadow Size of SgrA*. Phys. Rev. Lett. 2016, 116, 031101. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, T.; Wang, C.; Broderick, A.E.; Doeleman, S.S.; Fish, V.L.; Loeb, A.; Psaltis, D. Testing General Relativity with Accretion-Flow Imaging of SgrA*. Phys. Rev. Lett. 2016, 117, 091101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broderick, A.E.; Fish, V.L.; Johnson, M.D.; Rosenfeld, K.; Wang, C.; Doeleman, S.S.; Akiyama, K.; Johannsen, T.; Roy, A.L. Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models. Astrophys. J. 2016, 820, 137. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Narayan, R.; Doeleman, S.S.; Wardle, J.F.C.; Bouman, K.L. High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J. 2016, 829, 11. [Google Scholar] [CrossRef]
- Kim, J.; Marrone, D.P.; Chan, C.K.; Medeiros, L.; Özel, F.; Psaltis, D. Bayesian techniques for comparing time-dependent GRMHD simulations to variable Event Horizon Telescope observations. Astrophys. J. 2016, 832, 156. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, F.; Johnson, M.D.; Shiokawa, H.; Doeleman, S.S.; Falcke, H. Quantifying Intrinsic Variability of Sagittarius A* Using Closure Phase Measurements of the Event Horizon Telescope. Astrophys. J. 2017, 847, 55. [Google Scholar] [CrossRef] [Green Version]
- Doeleman, S.S. Seeing the unseeable. Nat. Astron. 2017, 1, 646. [Google Scholar] [CrossRef] [Green Version]
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef] [Green Version]
- Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T. Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. Astrophys. J. 2009, 692, 1075–1109. [Google Scholar] [CrossRef] [Green Version]
- Gillessen, S.; Eisenhauer, F.; Fritz, T.K.; Bartko, H.; Dodds-Eden, K.; Pfuhl, O.; Ott, T.; Genzel, R. The orbit of the star S2 around SGR A* from very large telescope and Keck data. Astrophys. J. 2009, 707, L114–L117. [Google Scholar] [CrossRef] [Green Version]
- Meyer, L.; Ghez, A.M.; Schödel, R.; Yelda, S.; Boehle, A.; Lu, J.R.; Do, T.; Morris, M.R.; Becklin, E.E.; Matthews, K. The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 2012, 338, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannsen, T.; Psaltis, D.; Gillessen, S.; Marrone, D.P.; Özel, F.; Doeleman, S.S.; Fish, V.L. Masses of nearby Supermassive Black Holes with Very Long Baseline Interferometry. Astrophys. J. 2012, 758, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Baade, W. A Search For the Nucleus of Our Galaxy. Publ. Astron. Soc. Pac. 1946, 58, 249–252. [Google Scholar] [CrossRef]
- Becklin, E.E.; Neugebauer, G. Infrared Observations of the Galactic Center. Astrophys. J. 1968, 151, 145. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Ozernoi, L.M. Tidal disruption of stars and the evolution of a massive black hole under the conditions of the galactic center. Soviet Astron. Lett. 1977, 3, 209–211. [Google Scholar]
- Dokuchaev, V.I. The Evolution of a Massive Black-Hole in the Nucleus of a Normal Galaxy. Sov. Astron. Lett. 1989, 15, 167–175. [Google Scholar]
- Allen, D.A.; Hyland, A.R.; Hillier, D.J. The source of luminosity at the Galactic Centre. Mon. Not. R. Astron. Soc. 1990, 244, 706–713. [Google Scholar]
- Dokuchaev, V.I. Joint evolution of a galactic nucleus and central massive black hole. Mon. Not. R. Astron. Soc. 1991, 251, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I. Birth and life of massive black holes. Sov. Phys. Usp. 1991, 34, 447–470. [Google Scholar] [CrossRef]
- Manko, V.S.; Novikov, I.D. Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments. Class. Quantum Gravity 1992, 9, 2477–2487. [Google Scholar] [CrossRef]
- Lo, K.Y.; Backer, D.C.; Kellermann, K.I.; Reid, M.; Zhao, J.H.; Goss, W.M.; Moran, J.M. High-resolution VLBA imaging of the radio source SgrA* at the Galactic Centre. Nature 1993, 362, 38–40. [Google Scholar] [CrossRef]
- Backer, D.C.; Zensus, J.A.; Kellermann, K.I.; Reid, M.; Moran, J.M.; Lo, K.Y. Upper limit of 3.3 astronomical units to the diameter of the galactic center radio source SgrA*. Science 1993, 262, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Eckart, A.; Genzel, R. Observations of stellar proper motions near the Galactic Centre. Nature 1996, 383, 415–417. [Google Scholar] [CrossRef]
- Haller, J.W.; Rieke, M.J.; Rieke, G.H.; Tamblyn, P.; Close, L.; Melia, F. Stellar Kinematics and the Black Hole in the Galactic Center: Erratum. Astrophys. J. 1996, 468, 955. [Google Scholar] [CrossRef]
- Ghez, A.M.; Klein, B.L.; Morris, M.; Becklin, E.E. High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy. Astrophys. J. 1998, 509, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Backer, D.C.; Sramek, R.A. Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A*. Astrophys. J. 1999, 524, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Readhead, A.C.S.; Vermeulen, R.C.; Treuhaft, R.N. The Proper Motion of Sagittarius A*. I. First VLBA Results. Astrophys. J. 1999, 524, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Baganoff, F.K.; Angelini, L.; Bautz, M.; Brandt, N.; Cui, W.; Doty, J.; Feigelson, E.; Garmire, G.; Kallman, T.; Maeda, Y.; et al. Chandra Imaging of SgrA* and the Galactic Center. Bull. Am. Astron. Soc. 1999, 31, 1463. [Google Scholar]
- Falcke, H.; Markoff, S. The jet model for Sgr A*: Radio and X-ray spectrum. Astron. Astrophys. 2000, 362, 113–118. [Google Scholar]
- Novikov, I.D.; Frolov, V.P. Black holes in the Universe. Phys. Usp. 2001, 44, 291–305. [Google Scholar] [CrossRef]
- Baganoff, F.K.; Bautz, M.W.; Brandt, W.N.; Chartas, G.; Feigelson, E.D.; Garmire, G.P.; Maeda, Y.; Morris, M.; Ricker, G.R.; Townsley, L.K.; et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature 2001, 413, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornstein, S.D.; Ghez, A.M.; Tanner, A.; Morris1, M.; Becklin, E.E.; Wizinowich, P. Limits on the Short-Term Variability of Sagittarius A* in the Near-Infrared. Astrophys. J. Lett. 2002, 577, L9–L13. [Google Scholar] [CrossRef]
- Genzel, R.; Schödel, R.; Ott, T.; Eckart, A.; Alexander, T.; Lacombe, F.; Rouan, D.; Aschenbach, B. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 2003, 425, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Aschenbach, B.; Grosso, N.; Porquet, D.; Predehl, P. X-ray flares reveal mass and angular momentum of the Galactic Center black hole. Astron. Astrophys. 2004, 417, 71–78. [Google Scholar] [CrossRef]
- Yusef-Zadeh, F.; Roberts, D.; Wardle, M.; Heinke, C.O.; Bower, G.C. Flaring Activity of Sagittarius A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma. Astrophys. J. 2006, 650, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Marrone, D.P.; Baganoff, F.K.; Morris, M.R.; Moran, J.M.; Ghez, A.M.; Hornstein, S.D.; Dowell8, C.D.; Muñoz, D.J.; Bautz, M.W.; Ricker, G.R.; et al. An X-Ray, Infrared, and Submillimeter Flare of Sagittarius A*. Astrophys. J. 2008, 682, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Doeleman, S.S.; Weintroub, J.; Rogers, A.E.E.; Plambeck, R.; Freund, R.; Tilanus, P.P.J.; Friberg, P.; Ziurys, L.M.; Moran, J.M.; Corey, B.; et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 2008, 455, 78–80. [Google Scholar] [CrossRef]
- Doeleman, S.S.; Fish, V.L.; Broderick, A.E.; Loeb, A.; Rogers, A.E.E. Detecting Flaring Structures in Sagittarius A* with High-Frequency VLBI. Astrophys. J. 2009, 695, 59–74. [Google Scholar] [CrossRef]
- Dodds-Eden, K.; Porquet, D.; Trap, G.; Quataert, E.; Haubois, X.; Gillessen, S.; Grosso, N.; Pantin, E.; Falcke, H.; Rouan, D.; et al. Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys. J. 2009, 698, 676–692. [Google Scholar] [CrossRef]
- Broderick, A.E.; Loeb, A.; Narayan, R. The Event Horizon of Sagittarius A*. Astrophys. J. 2009, 701, 1357–1366. [Google Scholar] [CrossRef]
- Sabha, N.; Witzel, G.; Eckart, A.; Buchholz, R.M.; Bremer, M.; Gießübel, R.; García-Marín, M.; Kunneriath, D.; Muzic, K.; Schödel, R.; et al. The extreme luminosity states of Sagittarius A*. Astron. Astrophys. J. 2010, 512, A2. [Google Scholar] [CrossRef]
- Dexter, J.; Agol, E.; Fragile, P.C.; McKinney, J.C. The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations. Astrophys. J. 2010, 717, 1092–1104. [Google Scholar] [CrossRef]
- De Paolis, F.; Ingrosso, G.; Nucita, A.A.; Qadir, A.; Zakharov, A.F. Estimating the parameters of the Sgr A* black hole. Gen. Relat. Gravit. 2011, 43, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Loeb, A.; Reid, M.J. Localizing Sagittarius A* and M87 on Microarcsecond Scales with Millimeter Very Long Baseline Interferometry. Astrophys. J. 2011, 735, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Neilsen, J.; Nowak, M.A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q.D.; Grosso, N.; Porquet, N.; et al. A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J. 2013, 774, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Borka, D.; Jovanovićb, P.; Borka Jovanovića, V.; Zakharov, A.F. Constraining the range of Yukawa gravity interaction from S2 star orbits. J. Cosmol. Astropart. Phys. 2013, 11, 050. [Google Scholar] [CrossRef] [Green Version]
- Fish, V.L.; Johnson, M.D.; Lu, R.S.; Doeleman, S.S. Imaging an Event Horizon: Mitigation of Scattering Toward Sagittarius A*. Astrophys. J. 2014, 795, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Gwinn, C.R.; Kovalev, Y.Y.; Johnson, M.D.; Soglasnov, V.A. Discovery of Substructure in the Scatter-Broadened Image of Sgr A*. Astrophys. J. Lett. 2014, 794, L14–L19. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Fish, V.L.; Doeleman, S.S.; Broderick, A.E.; Wardle, J.F.C.; Marrone, D.P. Relative Astrometry of Compact Flaring Structures in Sgr A* with Polarimetric Very Long Baseline Interferometry. Astrophys. J. Lett. 2014, 794, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I. Spin and mass of the nearest supermassive black hole. Gen. Relat. Gravit. 2014, 46, 1832–1845. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H.; Gammie, C.F. Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A*. Astron. Astrophys. 2014, 570, A7. [Google Scholar] [CrossRef] [Green Version]
- Bower, G.C.; Markoff, S.; Dexter, J.; Gurwell, M.A.; Moran, J.M.; Brunthaler, A.; Falcke, H.; Fragile, H.; Maitra, D.; Marrone, D.; et al. Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter. Astrophys. J. 2015, 802, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Fish, V.L.; Doeleman, S.S.; Marrone, D.P.; Plambeck, R.L.; Wardle, J.F.C.; Akiyama, K.; Asada, K.; Beaudoin, C.; Blackburn, L.; et al. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science 2015, 350, 1242–1245. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulos, S.; Fritz, T.K.; Gillessen, G.S.; Genzel, W.R.; Pfuhl, O. The old nuclear star cluster in the Milky Way: Dynamics, mass, statistical parallax, and black hole mass. Mon. Not. R. Astron. Soc. 2015, 447, 948–968. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I.; Eroshenko, Y.N. Physical laboratory at the center of the Galaxy. Phys. Usp. 2015, 58, 772–784. [Google Scholar] [CrossRef] [Green Version]
- Rauch, C.; Ros, E.; Krichbaum, T.P.; Eckart, A.; Zensus, J.A.; Shahzamanian, B.; Mužić, K. Wisps in the Galactic center: Near-infrared triggered observations of the radio source Sgr A* at 43 GHz. Astron. Astrophys. J. 2016, 587, A37. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A.F.; Jovanovićf, P.; Borkag, D.; Borka Jovanović, V. Constraining the range of Yukawa gravity interaction from S2 star orbits II: Bounds on graviton mass. J. Cosmol. Astropart. Phys. 2016, 5, 045. [Google Scholar] [CrossRef] [Green Version]
- Becerril, R.; Valdez-Alvarado, S.; Nucamendi, U. Obtaining mass parameters of compact objects from redshifts and blueshifts emitted by geodesic particles around them. Phys. Rev. D 2016, 94, 124024. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B.; Psaltis, D. Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes. Phys. Rev. D 2018, 97, 084035. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T. Sgr A* and General Relativity. Class. Quantum Gravity 2016, 33, 113001. [Google Scholar] [CrossRef]
- Ortiz-León, G.N.; Johnson, M.D.; Doeleman, S.S.; Blackburn, B.L.; Fish, V.L.; Loinard, L.; Reid, M.J.; Castillo, E.; Chael, A.A.; Hernández-Gómez, A.; et al. The Intrinsic Shape of Sagittarius A* at 3.5-mm Wavelength. Astrophys. J. 2016, 824, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Parsa, M.; Eckart, A.; Shahzamanian, B.; Karas, V.; Zajaček, M.; Zensus, J.A.; Straubmeier, C. Investigating the Relativistic Motion of the Stars Near the Supermassive Black Hole in the Galactic Center. Astrophys. J. 2017, 845, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Capellupo, D.M.; Haggard, D.; Choux, N.; Baganoff, F.; Bower, G.C.; Cotton, B.; Degenaar, N.; Dexter, J.; Falcke, H.; Fragile, C.; et al. Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*. Astrophys. J. 2017, 845, 35. [Google Scholar] [CrossRef] [Green Version]
- Shiokawa, H.; Gammie, C.F.; Doeleman, S. Time Domain Filtering of Resolved Images of Sgr A*. Astrophys. J. 2017, 846, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Bouman, K.L.; Blackburn, L.; Chael, A.A.; Rosen, J.; Shiokawa, H.; Roelofs, F.; Akiyama, K.; Fish, V.L.; Doeleman, S.S. Dynamical Imaging with Interferometry. Astrophys. J. 2017, 850, 172–187. [Google Scholar] [CrossRef] [Green Version]
- Eckart, A.; Hüttemann, A.; Kiefer, C.; Britzen, B.; Zajaček, M.; Lämmerzahl, C.; Stöckler, M.; Valencia-S, M.; Karas, V.; García-Marín, M. The Milky Way’s Supermassive Black Hole: How Good a Case Is It? Found. Phys. 2017, 47, 553–624. [Google Scholar] [CrossRef] [Green Version]
- Abdujabbarov, A.; Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Shadow of the rotating black hole with quintessential energy in the presence of plasma. Int. J. Mod. Phys. D 2017, 26, 1750051. [Google Scholar] [CrossRef]
- Ponti, G.; George, E.; Scaringi, S.; Zhang, C.S.; Jin, C.; Dexter, J.; Terrier, R.; Clavel, M.; Degenaar, N.; Eisenhauer, F.; et al. A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon. Not. R. Astron. Soc. 2017, 468, 2447–2468. [Google Scholar] [CrossRef]
- Zajaček, M.; Tursunov, A.; Eckart, A.; Britzen, S. On the charge of the Galactic centre black hole. Mon. Not. R. Astron. Soc. 2018, 480, 4408–4423. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Du Foresto, V.C.; de Zeeuw, P.T.; Deen, C.; et al. Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astron. Astrophys. 2018, 618, L10. [Google Scholar]
- Zakharov, A.F. The black hole at the Galactic Center: Observations and models. Int. J. Mod. Phys. D 2018, 27, 1841009. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A.F. Constraints on tidal charge of the supermassive black hole at the Galactic Center with trajectories of bright stars. Eur. Phys. J. C 2018, 78, 689. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, A.F. Constraints on alternative theories of gravity with observations of the Galactic Center. EPJ Web Conf. 2018, 191, 01010. [Google Scholar] [CrossRef]
- Zhu, Z.; Johnson, M.D.; Narayan, R. Testing General Relativity with the Black Hole Shadow Size and Asymmetry of Sagittarius A*: Limitations from Interstellar Scattering. Astrophys. J. 2019, 870, 6. [Google Scholar] [CrossRef] [Green Version]
- Izmailov, R.N.; Zhdanov, E.R. Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? Eur. Phys. J. Plus 2019, 134, 384. [Google Scholar] [CrossRef]
- Zakharov, A.F. Tests of gravity theories with Galactic Center observations. Int. J. Mod. Phys. D 2019, 28, 1941003. [Google Scholar] [CrossRef] [Green Version]
- Do, T.; Ghez, A.; Lu, J.R.; Morris, M.; Hosek, M., Jr.; Hees, A.; Naos, S.; Ciurlo, A.; Armitage, P.J.; Beaton, R.L.; et al. Envisioning the next decade of Galactic Center science: A laboratory for the study of the physics and astrophysics of supermassive black holes. arXiv 2019, arXiv:1903.05293. [Google Scholar]
- Do, T.; Witzel, G.; Gautam, A.K.; Chen, Z.; Ghez, A.M.; Morris, M.R.; Becklin, E.E.; Ciurlo, A.; Hosek, M., Jr.; Martinez, G.D.; et al. Unprecedented variability of SgrA* in NIR. arXiv 2019, arXiv:1908.01777. [Google Scholar]
- Giddings, S.B. Searching for Quantum Black Hole Structure with the Event Horizon Telescope. Universe 2019, 5, 201. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.C.; Stojkovic, D. Observing a wormhole. Phys. Rev. D 2019, 100, 083513. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, K.; Mineshige, S.; Honma, M.; Akiyama, K. Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J. 2019, 887, 227. [Google Scholar] [CrossRef]
- Ho, L.C. Nuclear Activity in Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2008, 46, 475–539. [Google Scholar] [CrossRef]
- Gebhardt, K.; Thomas, J. The Black Hole Mass, Stellar Mass-to-Light Ratio, and Dark Halo in M87. Astrophys. J. 2009, 700, 1690–1701. [Google Scholar] [CrossRef]
- Gebhardt, K.; Adams, J.; Richstone, D.; Lauer, T.R.; Faber, S.M.; Gültekin, K.; Murphy, J.; Tremaine, S. The Black-Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations. Astrophys. J. 2011, 729, 119–132. [Google Scholar] [CrossRef]
- Walsh, J.; Barth, A.J.; Ho, L.C.; Sarzi, M. The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations. Astrophys. J. 2013, 770, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J.R.J.; Deane, R.; De Laurentis, M.; Desvignes, G.; et al. BlackHoleCam: Fundamental physics of the Galactic center. Int. J. Mod. Phys. D 2017, 26, 1730001. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; Brandner, W.; Buron, A.; et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2018, 615, L15. [Google Scholar]
- Amorim, A.; Bauböck, M.; Berger, J.P.; Brandner, W.; Clénet, Y.; Du Foresto, V.C.; de Zeeuw, P.T.; Dexter, J.; Duvert, G.; Ebert, M.; et al. Test of the Einstein Equivalence Principle near the Galactic Center Supermassive Black Hole. Phys. Rev. Lett. 2019, 122, 101102. [Google Scholar] [CrossRef] [Green Version]
- Mielnik, B.; Plebański, J. A Study of Geodesic Motion in the Field of Schwarzchild’s Solution. Acta Phys. Pol. 1962, 21, 239–268. [Google Scholar]
- Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. R. Astron. Soc. 1966, 131, 463–466. [Google Scholar] [CrossRef]
- Bardeen, J.M. Black Holes; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1973; pp. 215–239. [Google Scholar]
- Young, P.I. Capture of particles from plunge orbits by a black hole. Phys. Rev. D 1976, 14, 3281. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes. In The International Series of Monograph on Physics; Clarendon Press: Oxford, UK, 1983; Chapter 7; Volume 69. [Google Scholar]
- Falcke, H.; Melia, F.; Agol, E. Viewing the Shadow of the Black Hole at the Galactic Center. Astrophys. J. 2000, 528, L13–L16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, R. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J. 2004, 611, 996–1004. [Google Scholar] [CrossRef]
- Kardashev, N.S.; Novikov, I.D.; Shatskiy, A.A. Astrophysics of Wormholes. Int. J. Mod. Phys. D 2007, 16, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Markoff, S. Toward the event horizon—The supermassive black hole in the Galactic Center. Class. Quantum Gravity 2013, 30, 244003. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Bambi, C. Testing SgrA* with the spectrum of its accretion structure. J. Cosmol. Astropart. Phys. 2014, 1, 041. [Google Scholar] [CrossRef] [Green Version]
- Inoue, M.; Algaba-Marcos, J.C.; Asada, K.; Blundell, R.; Brisken, W.; Burgos, R.; Chang, C.C.; Chen, M.T.; Doeleman, S.S.; Fish, V.; et al. Greenland telescope project: Direct confirmation of black hole with sub-millimeter VLBI. Radio Sci. 2014, 49, 564–571. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E.; Rúnarsson, H.F. Shadows of Kerr Black Holes with Scalar Hair. Phys. Rev. Lett. 2015, 115, 211102. [Google Scholar] [CrossRef] [Green Version]
- Abdujabbarov, A.A.; Rezzolla, L.; Ahmedov, B.J. A coordinate-independent characterization of a black hole shadow. Mon. Not. R. Astron. Soc. 2015, 454, 2423–2435. [Google Scholar] [CrossRef] [Green Version]
- Younsi, Z.; Zhidenko, A.; Rezzolla, L.; Konoplya, R.; Mizuno, Y. A new method for shadow calculations: Application to parameterised axisymmetric black holes. Phys. Rev. D 2016, 94, 084025. [Google Scholar] [CrossRef] [Green Version]
- de Vries, A. The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A4. Class. Quantum Gravity 2000, 17, 123. [Google Scholar] [CrossRef]
- Schnittman, J.D.; Krolik, J.H.; Hawley, J.F. Light Curves from an MHD Simulation of a Black Hole Accretion Disk. Astrophys. J. 2006, 651, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Shatskiy, A.A.; Novikov, I.D.; Kardashev, N.S. A dynamic model of the wormhole and the Multiverse model. Phys. Usp. 2008, 51, 457–464. [Google Scholar] [CrossRef]
- Bambi, C.; Freese, K. Apparent shape of super-spinning black holes. Phys. Rev. D 2009, 79, 043002. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Shapiro, I.L. Black holes in higher dimensional gravity theory with corrections quadratic in curvature. Phys. Rev. D 2009, 80, 044034. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, F.; Thidé, B.; Molina-Terriza, G.; Anzolin, G. Twisting of light around rotating black holes. Nat. Phys. 2011, 7, 195–197. [Google Scholar] [CrossRef] [Green Version]
- Vincent, F.H.; Paumard, T.; Gourgoulhon, E.; Perrin, G. GYOTO: A new general relativistic ray-tracing code. Class. Quantum Gravity 2011, 28, 225011. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F. Shadow of a rotating braneworld black hole. Phys. Rev. D 2012, 85, 064019. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T. Photon Rings around Kerr and Kerr-like Black Holes. Astrophys. J. 2013, 777, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.O.; Dokuchaev, V.I.; Eroshenko, Y.N. Black holes in the presence of dark energy. Phys. Usp. 2013, 56, 1155–1175. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F. Shadow of a Kaluza-Klein rotating dilaton black hole. Phys. Rev. D 2013, 87, 044057. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A.F.; Borka, D.; Jovanović, V.B.; Jovanovićg, P. Constraints on RnRn gravity from precession of orbits of S2-like stars: A case of a bulk distribution of mass. Adv. Space Res. 2014, 54, 1108–1112. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I.; Eroshenko, Y.N. Weighing of the dark matter at the center of the galaxy. JETP Lett. 2015, 101, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.W.; Cheng, P.; Zhong, Y.; Zhou, X.N. Shadow of noncommutative geometry inspired black hole. J. Cosmol. Astropart. Phys. 2015, 8, 004. [Google Scholar] [CrossRef] [Green Version]
- Abdolrahimi, S.; Mann, R.B.; Tzounis, C. Distorted local shadows. Phys. Rev. D 2015, 91, 084052. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Aguilar, A.; Nucamendi, U. Kerr black hole parameters in terms of the redshift/blueshift of photons emitted by geodesic particles. Phys. Rev. D 2015, 92, 045024. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Radu, E.; Rúnarsson, H.F. Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D 2016, 25, 1641021. [Google Scholar] [CrossRef] [Green Version]
- Abdujabbarov, A.A.; Amir, M.; Ahmedov, B.; Ghosh, S.G. Shadow of rotating regular black holes. Phys. Rev. D 2016, 93, 104004. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M.; Maitra, M. Relativistic orbits around spinning supermassive black holes: Secular evolution to 4.5 post-Newtonian order. Phys. Rev. D 2017, 95, 064003. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.; Radu, E. Fundamental photon orbits: Black hole shadows and spacetime instabilities. Phys. Rev. D 2017, 96, 024039. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, F.; Medeiros da Rosa, A.; Will, C.M. Dark matter spikes in the vicinity of Kerr black holes. Phys. Rev. D 2017, 96, 083014. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F. The Fourteenth Marcel Grossmann Meeting. In Proceedings of the MG14 Meeting on General Relativity, Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2017; p. 3543. [Google Scholar]
- Mureika, J.R.; Varieschi, G.U. Black hole shadows in fourth-order conformal Weyl gravity. Can. J. Phys 2017, 95, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.; Singh, B.P.; Ghosh, S.G. Shadows of rotating five-dimensional charged EMCS black holes. Eur. Phys. J. C 2018, 78, 399. [Google Scholar] [CrossRef] [Green Version]
- Lan, X.G.; Pu, J. Observing the contour profile of a Kerr–Sen black hole. Mod. Phys. Lett. A 2018, 33, 1850099. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Jing, J. Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment. Phys. Rev. D 2018, 98, 104040. [Google Scholar] [CrossRef] [Green Version]
- Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F.H. Imaging a non-singular rotating black hole at the center of the Galaxy. Class. Quantum Gravity 2018, 35, 115009. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Younsi, Z.; Fromm, C.M.; Porth, O.; Laurentis, M.D.; Olivares, H.; Falcke, H.; Kramer, M.; Rezzolla, L. The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nat. Astron. 2018, 2, 585. [Google Scholar] [CrossRef]
- Repin, S.V.; Kompaneets, D.A.; Novikov, I.D.; Mityagina, V.A. Shadow of rotating black holes on a standard background screen. arXiv 2019, arXiv:1802.04667. [Google Scholar]
- Hennigar, R.A.; Poshteh, M.B.J.; Mann, R.B. Shadows, Signals, and Stability in Einsteinian Cubic Gravity. Phys. Rev. D 2018, 97, 064041. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.W.; Zou, Y.C.; Liu, Y.X.; Mannb, R.B. Curvature radius and Kerr black hole shadow. J. Cosmol. Astropart. Phys. 2019, 8, 030. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, L.; Doeleman, S.; Dexter, J.; Gómez, J.L.; Johnson, M.D.; Palumbo, C.; Weintroub, J.; Bouman, K.L.; Chael, A.A.; Farah, J.R.; et al. Studying black holes on horizon scales with VLBI ground arrays. arXiv 2019, arXiv:1909.01411. [Google Scholar]
- Meierovich, B.E. Static State of a Black Hole Supported by Dark Matter. Universe 2019, 5, 198. [Google Scholar] [CrossRef] [Green Version]
- Abdikamalov, A.B.; Abdujabbarov, A.A.; Ayzenberg, D.; Malafarina, D.; Bambi, C.; Ahmedov, B. Black hole mimicker hiding in the shadow: Optical properties of the γ metric. Phys. Rev. D 2019, 100, 024014. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wu, Q.; Jamil, M.; Jusufi, K. Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys. Rev. D 2019, 100, 044055. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.X.; Zhu, Z.H. Testing the Schwarzschild metric in a strong field region with the Event Horizon Telescope. Phys. Rev. D 2019, 100, 064011. [Google Scholar] [CrossRef] [Green Version]
- Davoudiasl, H.; Denton, P.B. Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys. Rev. Lett. 2019, 123, 021102. [Google Scholar] [CrossRef] [Green Version]
- Konoplya, R.A.; Pappas, T.; Zhidenko, A. Einstein-scalar-Gauss-Bonnet black holes: Analytical approximation for the metric and applications to calculations of shadows. Phys. Rev. D 2020, 101, 044054. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.O.; López-Moreno, E. Kerr Black Holes within a Modified Theory of Gravity. Universe 2019, 5, 191. [Google Scholar] [CrossRef] [Green Version]
- Rummel, M.; Burgess, C.P. Constraining Fundamental Physics with the Event Horizon Telescope. arXiv 2020, arXiv:2001.00041. [Google Scholar]
- Alexeyev, S.O.; Prokopov, V.A. Shadows from spinning black holes in extended gravity. arXiv 2020, arXiv:2001.09272. [Google Scholar]
- Chagoya, J.; Ortiz, C.; Rodríguez, B.; Roque, A.A. Strong lensing by DHOST black holes. arXiv 2020, arXiv:2007.09473. [Google Scholar]
- Kardashev, N.S.; Novikov, D.; Lukash, V.N.; Pilipenko, S.V.; Mikheeva, E.V.; Bisikalo, D.V.; Wiebe, D.S.; Doroshkevich, A.G.; Zasov, A.V.; Zinchenko, I.I. Review of scientific topics for the Millimetron space observatory. Phys. Usp. 2014, 57, 1199–1228. [Google Scholar] [CrossRef]
- Roelofs, F.; Falcke, H.; Brinkerink, C.; Mościbrodzka, M.; Gurvits, L.I.; Martin-Neira, M.; Kudriashov, V.; Klein-Wolt, M.; Tilanus, R.; Kramer, M.; et al. Simulations of imaging the event horizon of Sagittarius A* from space. Astron. Astrophys. 2019, 625, A124. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, D.C.M.; Doeleman, S.S.; Johnson, M.D.; Bouman, K.L.; Chael, A.A. Metrics and Motivations for Earth-Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope. Astrophys. J 2019, 881, 62. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
- Boyer, R.H.; Lindquist, R.W. Maximal Analytic Extension of the Kerr Metric. J. Math. Phys. 1967, 8, 265. [Google Scholar] [CrossRef]
- Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559. [Google Scholar] [CrossRef] [Green Version]
- De Felice, F. Equatorial geodesic motion in the gravitational field of a rotating source. Nuovo Cimento B 1968, 57, 351–388. [Google Scholar] [CrossRef]
- Bardeen, J.M. Stability of Circular Orbits in Stationary, Axisymmetric Space-Times. Astrophys. J. 1970, 161, 103–109. [Google Scholar] [CrossRef]
- Bardeen, J.M. A Variational Principle for Rotating Stars in General Relativity. Astrophys. J. 1970, 162, 71–95. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Gal’tsov, D.V. Particles and Fields in the Vicinity of Black Holes; Moscow Univ. Press: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Wilkins, D.C. Bound Geodesics in the Kerr Metric. Phys. Rev. D 1972, 5, 814–822. [Google Scholar] [CrossRef]
- Luminet, J.P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 1979, 75, 228–235. [Google Scholar]
- Zakharov, A.F. Comment on “Gravitational lensing of massive particles in Schwarzschild gravity”. Class. Quantum Gravity 1994, 11, 1027. [Google Scholar] [CrossRef]
- Beckwith, K.; Done, C. Extreme gravitational lensing near rotating black holes. Mon. Not. R. Astron. Soc. 2005, 359, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, A.F.; Nucita, A.A.; DePaolis, F.; Ingrosso, G. Measuring the black hole parameters in the galactic center with Radioastron. New Astron. 2005, 10, 479–489. [Google Scholar] [CrossRef]
- Takahashi, R. Black Hole Shadows of Charged Spinning Black Holes. Publ. Astron. Soc. Jpn. 2005, 57, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Watarai, K. Eclipsing light curves for accretion flows around a rotating black hole and atmospheric effects of the companion star. Mon. Not. R. Astron. Soc. 2007, 374, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Bakala, P.; Čermák, P.; Hledík, S.; Stuchlík, Z.; Truparová, K. Extreme gravitational lensing in vicinity of Schwarzschild-de Sitter black holes. Cent. Eur. J. Phys. 2007, 5, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Cai, M.; Shen, Z.Q.; Yuan, F. Black Hole Shadow Image and Visibility Analysis of Sagittarius A*. Mon. Not. R. Astron. Soc. 2007, 379, 833–840. [Google Scholar] [CrossRef]
- Virbhadra, K.S. Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D 2009, 79, 083004. [Google Scholar] [CrossRef] [Green Version]
- Hioki, K.; Maeda, K.I. Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow. Phys. Rev. D 2009, 80, 024042. [Google Scholar] [CrossRef] [Green Version]
- Schee, J.; Stuchlík, Z. Profiles of emission lines generated by rings orbiting braneworld Kerr black holes. Gen. Relat. Gravit. 2009, 41, 1795–1818. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J.; Agol, E. A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J. 2009, 696, 1616–1629. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T.; Psaltis, D. Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images. Astrophys. J. 2010, 718, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Amarilla, L.; Eiroa, E.F.; Giribet, G. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys. Rev. D 2010, 81, 124045. [Google Scholar] [CrossRef] [Green Version]
- Nitta, D.; Chiba, T.; Sugiyama, N. Shadows of Colliding Black Holes. Phys. Rev. D 2011, 84, 063008. [Google Scholar] [CrossRef] [Green Version]
- Yumoto, A.; Nitta, D.; TChiba, T.; Sugiyama, N. Shadows of Multi-Black Holes: Analytic Exploration. Phys. Rev. D 2012, 86, 103001. [Google Scholar] [CrossRef] [Green Version]
- Abdujabbarov, A.; Atamurotov, F.; Kucukakca, Y.; Ahmedov, B.; Camci, U. Shadow of Kerr-Taub-NUT black hole. Astrophys. Space Sci. 2013, 344, 429–435. [Google Scholar] [CrossRef]
- Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm VLBI facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef] [Green Version]
- Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating Hořava-Lifshitz black hole. Astrophys. Space Sci. 2013, 348, 179–188. [Google Scholar] [CrossRef]
- Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating non-Kerr black hole. Phys. Rev. D 2013, 88, 064004. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole. J. Cosmol. Astropart. Phys. 2013, 11, 063. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, N.; Li, Z.; Bambi, C. Constraining the spin and the deformation parameters from the black hole shadow. J. Cosmol. Astropart. Phys. 2014, 6, 043. [Google Scholar] [CrossRef] [Green Version]
- Papnoi, U.; Atamurotov, F.; Ghosh, S.G.; Ahmedov, B. Shadow of five-dimensional rotating Myers-Perry black hole. Phys. Rev. D 2014, 90, 024073. [Google Scholar] [CrossRef] [Green Version]
- Tinchev, V.K.; Yazadjiev, S.S. Possible imprints of cosmic strings in the shadows of galactic black holes. Int. J. Mod. Phys. D 2014, 23, 1450060. [Google Scholar] [CrossRef] [Green Version]
- Kraniotis, G.V. Gravitational lensing and frame dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes. Gen. Relat. Gravit. 2014, 46, 1818. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi-Nodehi, M.; Li, Z.; Bambi, C. Shadows of CPR black holes and tests of the Kerr metric. Eur. Phys. J. C 2015, 75, 315. [Google Scholar] [CrossRef] [Green Version]
- Tinchev, V.K. The Shadow of Generalized Kerr Black Holes with Exotic Matter. Chin. J. Phys. 2015, 53, 110113. [Google Scholar]
- Gralla, S.E.; Porfyriadis, A.P.; Warburton, N. Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole. Phys. Rev. D 2015, 92, 064029. [Google Scholar] [CrossRef] [Green Version]
- Atamurotov, F.; Ahmedov, B.; Abdujabbarov, A. Optical properties of black holes in the presence of a plasma: The shadow. Phys. Rev. D 2015, 92, 084005. [Google Scholar] [CrossRef] [Green Version]
- Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D 2015, 92, 104031. [Google Scholar] [CrossRef] [Green Version]
- Shipley, J.; Dolan, S.R. Binary black hole shadows, chaotic scattering and the Cantor set. Class. Quantum Gravity 2016, 33, 175001. [Google Scholar] [CrossRef]
- Liu, X.; Yang, N.; Jia, J. Gravitational lensing of massive particles in Schwarzschild gravity. Class. Quantum Gravity 2016, 33, 175014. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z. Shadow of a dressed black hole and determination of spin and viewing angle. Int. J. Mod. Phys. D 2016, 25, 1650026. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Lupsasca, A.; Strominger, A. Near-horizon Kerr magnetosphere. Phys. Rev. D 2016, 93, 104041. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.; Ghosh, S.G. Shapes of rotating nonsingular black hole shadows. Phys. Rev. D 2016, 94, 024054. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Zimmerman, A.; Zimmerman, P. Transient Instability of Rapidly Rotating Black Holes. Phys. Rev. D 2016, 94, 084017. [Google Scholar] [CrossRef] [Green Version]
- Vincent, F.H.; Gourgoulhon, E.; Herdeiro, C.; Radu, E. Astrophysical imaging of Kerr black holes with scalar hair. Phys. Rev. D 2016, 94, 084045. [Google Scholar] [CrossRef] [Green Version]
- Dastan, S.; Saffari, R.; Soroushfar, S. Shadow of a Charged Rotating Black Hole in f(R) Gravity. arXiv 2016, arXiv:1606.06994. [Google Scholar]
- Tretyakova, D.A.; Adyev, T.M. Horndeski/Galileon black hole shadows. arXiv 2016, arXiv:1610.07300. [Google Scholar]
- Dastan, S.; Saffari, R.; Soroushfar, S. Shadow of a Kerr-Sen dilaton-axion Black Hole. arXiv 2016, arXiv:1610.09477. [Google Scholar]
- Sharif, M.; Iftikhar, S. Shadow of a charged rotating non-commutative black hole. Eur. Phys. J. C 2016, 76, 630. [Google Scholar] [CrossRef] [Green Version]
- Opatrný, T.; Richterek, L.; Bakala, P. Life under a black sun. Am. J. Phys. 2017, 85, 14. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Kleihaus, B.; Kunz, J.; Radu, E. Shadows of Einstein-dilaton-Gauss-Bonnet black holes. Phys. Lett. B 2017, 768, 373–379. [Google Scholar] [CrossRef]
- Singh, B.P.; Ghosh, S.G. Shadow of Schwarzschild-Tangherlini black holes. arXiv 2017, arXiv:1707.07125. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Chen, S.; Jing, J. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole. J. Cosmol. Astropart. Phys. 2017, 10, 051. [Google Scholar] [CrossRef] [Green Version]
- Porfyriadis, A.P.; Shi, Y.; Strominger, A. Photon emission near extreme Kerr black holes. Phys. Rev. D 2017, 95, 064009. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Lupsasca, A.; Strominger, A. Observational Signature of High Spin at the Event Horizon Telescope. Mon. Not. R. Astron. Soc. 2017, 475, 3829–3853. [Google Scholar] [CrossRef] [Green Version]
- Perlick, V.; Tsupko, O.Y. Light propagation in a plasma on Kerr spacetime: Separation of the Hamilton-Jacobi equation and calculation of the shadow. Phys. Rev. D 2017, 95, 104003. [Google Scholar] [CrossRef] [Green Version]
- Tsupko, O.Y. Analytical calculation of black hole spin using deformation of the shadow. Phys. Rev. D 2017, 95, 104058. [Google Scholar] [CrossRef] [Green Version]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational Lensing in Presence of Plasma: Strong Lens Systems, Black Hole Lensing and Shadow. Universe 2017, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Stuchlík, Z.; Charbulák, D. Light escape cones in local reference frames of Kerr–de Sitter black hole spacetimes and related black hole shadows. Eur. Phys. J. C 2018, 78, 180. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R.; Rodriguez, M.J. Does the black hole shadow probe the event horizon geometry? Phys. Rev. D 2018, 97, 084020. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Dong, Y.P.; Liu, D.-J. Revisiting the shadow of a black hole in the presence of a plasma. Int. J. Mod. Phys. D 2018, 27, 1850114. [Google Scholar] [CrossRef]
- Tsukamoto, N. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes. Phys. Rev. D 2018, 97, 064021. [Google Scholar] [CrossRef] [Green Version]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Shadow of a black hole at cosmological distances. Phys. Rev. D 2018, 98, 084020. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Xu, Z.; Wang, J. Rotating Black Hole Shadow in Perfect Fluid Dark Matter. J. Cosmol. Astropart. Phys. 2018, 12, 040. [Google Scholar] [CrossRef] [Green Version]
- Yan, H. Influence of a plasma on the observational signature of a high-spin Kerr black hole. Phys. Rev. D 2019, 99, 084050. [Google Scholar] [CrossRef] [Green Version]
- Vagnozzi, S.; Visinelli, L. Hunting for extra dimensions in the shadow of M87*. Phys. Rev. D 2019, 100, 024020. [Google Scholar] [CrossRef] [Green Version]
- Gyulchev, G.; Nedkova, P.; Vetsov, T.; Yazadjiev, S. Image of the Janis-Newman-Winicour naked singularity with a thin accretion disk. Phys. Rev. D 2019, 100, 024055. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ghosh, S.G.; Wang, A. Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D 2019, 100, 124024. [Google Scholar] [CrossRef] [Green Version]
- Konoplya, R.A. Shadow of a black hole surrounded by dark matter. Phys. Lett. B 2019, 795, 1–6. [Google Scholar] [CrossRef]
- Ali, M.S.; Amir, M. Shadow of rotating charged black hole with Weyl corrections. arXiv 2019, arXiv:1906.04146. [Google Scholar]
- Johnson, M.D.; Lupsasca, A.; Strominger, A.; Wong, N.; Hadar, S.; Kapec, D.; Narayan, R.; Chael, A.; Gammie, C.F.; Galison, P. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 2020, 6, eaaz1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siino, M. Generalization of Photon Sphere by Causal Structure—In Order to See Dynamical Black Hole Shadow. arXiv 2019, arXiv:1908.02921. [Google Scholar]
- Zhang, M.; Guo, M. Can shadows reflect phase structures of black holes? arXiv 2019, arXiv:1909.07033. [Google Scholar]
- Shipley, J.O. Strong-field gravitational lensing by black holes. arXiv 2019, arXiv:1909.04691. [Google Scholar]
- Shaikh, R.; Kocherlakota, P.; Narayan, R.; Joshi, P.S. Shadows of spherically symmetric black holes and naked singularities. Mon. Not. R. Astron. Soc. 2019, 482, 52–64. [Google Scholar] [CrossRef]
- Shaikh, R.; Joshi, P.S. Can we distinguish black holes from naked singularities by the images of their accretion disks? J. Cosmol. Astropart. Phys. 2019, 10, 064. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Liu, C.; Casana, R.; Cavalcante, A. Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking. Eur. Phys. J. C 2020, 80, 178. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Johnson, M.D.; Gammie, C.F. The Shadow of a Spherically Accreting Black Hole. Astrophys. J. Lett. 2019, 885, L33. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Crew, G.; Impellizzeri, V.; Martí-Vidal, I.; Matthews, L.D.; Messias, H.; Rottmann, H.; Alef, W.; Blackburn, L.; Bronzwaer, T.; et al. First M87 Event Horizon Telescope Results and the Role of ALMA. Messenger 2019, 177, 25. [Google Scholar]
- Feng, X.H.; Lu, H. On the Size of Rotating Black Holes. Eur. Phys. J. C 2020, 80, 551. [Google Scholar] [CrossRef]
- Allahyari, A.; Khodadia, M.; Vagnozzib, S.; Motac, D.F. Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. J. Cosmol. Astropart. Phys. 2020, 2, 003. [Google Scholar] [CrossRef] [Green Version]
- Konoplya, R.A. Quantum corrected black holes: Quasinormal modes, scattering, shadows. Phys. Lett. B 2020, 804, 135363. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Nazarova, N.O.; Smirnov, V.P. Event horizon silhouette: Implications to supermassive black holes in the galaxies M87 and Milky Way. Gen. Relat. Gravit. 2019, 51, 81. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I. To see the invisible: Image of the event horizon within the black hole shadow. Int. J. Mod. Phys. D 2019, 28, 1941005. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Eirób, N.A.; Herdeiroc, C.A.R.; Lemosb, J.P.S. Lensing and shadow of a black hole surrounded by a heavy accretion disk. J. Cosmol. Astropart. Phys. 2020, 3, 035. [Google Scholar] [CrossRef] [Green Version]
- Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Hills and holes in the microlensing light curve due to plasma environment around gravitational lens. Mon. Not. R. Astron. Soc. 2020, 491, 5636–5649. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Bambi, C.; Visinelli, L. Concerns regarding the use of black hole shadows as standard rulers. Class. Quanum Grav. 2020, 37, 087001. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Gao, C. An exact black hole spacetime with scalar field and its shadow together with quasinormal modes. arXiv 2020, arXiv:2001.01137. [Google Scholar] [CrossRef]
- Banerjee, I.; Chakraborty, S.; SenGupta, S. Silhouette of M87*: A new window to peek into the world of hidden dimensions. Phys. Rev. D 2020, 101, 041301. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.; Lupsasca, A. Lensing by Kerr black holes. Phys. Rev. D 2020, 101, 044031. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Zhu, Q.H. Revisiting a rotating black hole shadow with astrometric observables. Phys. Rev. D 2020, 101, 084029. [Google Scholar] [CrossRef]
- Himwich, E.; Johnson, M.D.; Lupsasca, A.; Strominger, A. Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D 2020, 101, 084020. [Google Scholar] [CrossRef] [Green Version]
- Li, P.-C.; Guo, M.; Chen, B. Shadow of a spinning black hole in an expanding universe. Phys. Rev. D 2020, 101, 084041. [Google Scholar] [CrossRef] [Green Version]
- Jusufi, K. Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius. Phys. Rev. D 2020, 101, 084085. [Google Scholar] [CrossRef] [Green Version]
- Bakala, P.; Dočekal, J.; Turoňova, Z. Habitable zones around almost extremely spinning black holes (black sun revisited). Astrophys. J. 2020, 889, 41. [Google Scholar] [CrossRef] [Green Version]
- Anantua, R.; Ressler, S.; Quataert, E. On the Comparison of AGN with GRMHD Simulations: I. Sgr A*. Mon. Not. R. Astron. Soc. 2020, 493, 1404–1418. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, A.; Benali, M.; Balali, A.E.; Hadri, W.E.; Moumni, H.E. Shadows of Charged and Rotating Black Holes with a Cosmological Constant. arXiv 2020, arXiv:2007.09058. [Google Scholar]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon regions and shadows of Kerr-Newman-NUT black holes with a cosmological constant. Phys. Rev. D 2014, 89, 124004. [Google Scholar] [CrossRef] [Green Version]
- Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 2015, 24, 1542024. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.V.P.; Herdeiro, C.A.R. Shadows and strong gravitational lensing: A brief review. Gen. Relat. Gravit. 2018, 50, 42–69. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.T.; Bardeen, J.M. The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 1972, 173, L137–L142. [Google Scholar] [CrossRef]
- Cunningham, C.T.; Bardeen, J.M. The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 1973, 183, 237–264. [Google Scholar] [CrossRef]
- Viergutz, S.U. Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 1993, 272, 355–377. [Google Scholar]
- Rauch, K.P.; Blandford, R.D. Optical Caustics in a Kerr Spacetime and the Origin of Rapid X-ray Variability in Active Galactic Nuclei. Astrophys J. 1994, 421, 46–68. [Google Scholar] [CrossRef]
- Gralla, S.E.; Holz, D.E.; Wald, R.M. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 2019, 100, 024018. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I.; Nazarova, N.O. Gravitational lensing of a star by a rotating black hole. J. High Energy Phys. Lett. 2017, 106, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I.; Nazarova, N.O. Star Motion Around Rotating Black Hole. Available online: https://youtu.be/P6DneV0vk7U (accessed on 26 January 2018).
- Claudel, C.M.; Virbhadra, K.S.; Ellis, G.F. The geometry of photon surfaces. J. Math. Phys. 2001, 42, 818–838. [Google Scholar] [CrossRef] [Green Version]
- Grossman, R.; Levin, J.; Perez-Giz, G. The harmonic structure of generic Kerr orbits. Phys. Rev. D 2012, 85, 023012. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Spherical null geodesics of rotating Kerr black holes. Phys. Lett. B 2013, 718, 1552–1556. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ding, C.; Jing, J. Selected spherical photon orbits around a deformed Kerr black hole. Sci. China Phys. Mech. Astron. 2019, 62, 010411. [Google Scholar] [CrossRef] [Green Version]
- Glampedakis, K.; Pappas, G. Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes. Phys. Rev. D 2019, 99, 124041. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S. A Nearly horizon skimming orbits of Kerr black holes. Phys. Rev. D 2019, 63, 064016. [Google Scholar] [CrossRef] [Green Version]
- Teo, E. Spherical orbits around a Kerr black hole. arXiv 2020, arXiv:2007.04022. [Google Scholar] [CrossRef]
- Psaltis, D.; Narayan, R.; Fish, V.L.; Broderick, A.E.; Loeb, A.; Doeleman, S.S. Event-Horizon-Telescope Evidence for Alignment of the Black Hole in the Center of the Milky Way with the Inner Stellar Disk. Astrophys. J. 2015, 798, 15. [Google Scholar] [CrossRef] [Green Version]
- Dokuchaev, V.I.; Nazarova, N.O. Silhouettes of invisible black holes. Phys. Usp. 2020, 63, 583. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.Y.; Wong, G.N.; Prather, B.S.; Gammie, C.F. Feature Extraction on Synthetic Black Hole Images. arXiv 2020, arXiv:2007.00794. [Google Scholar]
- Bromley, B.C.; Chen, K.; Miller, W.A. Line emission from an accretion disk around a rotating black hole: Toward a measurement of frame dragging. Astrophys. J. 1997, 475, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Fanton, C.; Calvani, M.; de Felice, F.; Čadež, A. Detecting accretion disks in Active Galactic Nuclei. Publ. Astron. Soc. Jpn. 1997, 49, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Fukue, J. Silhouette of a dressed black hole. Publ. Astron. Soc. Jpn. 2003, 55, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Fukue, J. Light-curve diagnosis of a hot spot for accretion-disk models. Publ. Astron. Soc. Jpn. 2003, 55, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J.; Agol, E.; Fragile, P.C. Millimeter flares and VLBI visibilities from relativistic simulations of magnetized accretion onto the Galactic Center black hole. Astrophys. J. 2009, 703, L142–L146. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.S.; Roelofs, F.; Fish, V.L.; Shiokawa, H.; Doeleman, S.S.; Gammie, C.F.; Falcke, H.; Krichbaum, T.P.; Zensus, J.A. Imaging an event horizon: Mitigation of source variability of Sagittarius A*. Astrophys. J. 2016, 817, 173. [Google Scholar] [CrossRef] [Green Version]
- Luminet, J.P. An illustrated history of black hole imaging: Personal recollections (1972–2002). arXiv 2019, arXiv:1902.11196. [Google Scholar]
- Shiokawa, H. Observational Appearance of an Accretion Disk in a General Relativistic Magnetohydrodynamics (GRMHD) Simulation at a Radio Wavelength. 2019. Available online: https://eventhorizontelescope.org/simulations-gallery (accessed on 11 April 2019).
- Dokuchaev, V.I.; Nazarova, N.O. Event horizon image within black hole shadow. J. Exp. Theor. Phys. 2019, 128, 578–585. [Google Scholar] [CrossRef] [Green Version]
- van der Gucht, J.; Davelaar, J.; Hendriks, L.; Porth, O.; Olivares, H.; Mizuno, Y.; Fromm, C.M.; Falcke, H. Deep horizon: A machine learning network that recovers accreting black hole parameters. Astron. Astrophys. 2020, 636, A94. [Google Scholar] [CrossRef]
- Kawashima, T.; Kino, M.; Akiyama, K. Black Hole Spin Signature in the Black Hole Shadow of M87 in the Flaring State. Astrophys. J. 2019, 878, 27. [Google Scholar] [CrossRef] [Green Version]
- White, C.J.; Davelaar, J.; Hendriks, L.; Porth, O.; Olivares, H.; Mizuno, Y.; Fromm, C.M.; Falcke, H. The Effects of tilt on the images of black hole accretion flows. Astrophys. J. 2020, 894, 14. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Nazarova, N.O. Infall of the Star Into Rotating Black Hole Viewed by a Distant Observer. Available online: https://youtu.be/fps-3frL0AM (accessed on 15 April 2018).
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The structure and dynamics of the sub-parsec scale jet in M87 based on 50 VLBA observations over 17 years at 43 GHz. Astrophys. J. 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Nalewajko, K.; Sikora, M.; Rózànskà, A. On the orientation of the crescent image of M87*. Astron. Astrophys. 2020, 634, A38. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Nazarova, N.O. The Brightest Point in Accretion Disk and Black Hole Spin: Implication to the Image of Black Hole M87*. Universe 2019, 5, 183. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dokuchaev, V.I.; Nazarova, N.O. Visible Shapes of Black Holes M87* and SgrA*. Universe 2020, 6, 154. https://doi.org/10.3390/universe6090154
Dokuchaev VI, Nazarova NO. Visible Shapes of Black Holes M87* and SgrA*. Universe. 2020; 6(9):154. https://doi.org/10.3390/universe6090154
Chicago/Turabian StyleDokuchaev, Vyacheslav I., and Natalia O. Nazarova. 2020. "Visible Shapes of Black Holes M87* and SgrA*" Universe 6, no. 9: 154. https://doi.org/10.3390/universe6090154
APA StyleDokuchaev, V. I., & Nazarova, N. O. (2020). Visible Shapes of Black Holes M87* and SgrA*. Universe, 6(9), 154. https://doi.org/10.3390/universe6090154