Gravity Tests with Radio Pulsars
Abstract
:1. Introduction
2. Pulsar Population and Pulsar Observations
2.1. Pulsar Timing
2.2. Pulse-Structure Analysis
3. Theoretical Foundations
3.1. Orbital Dynamics
3.2. Signal Propagation
3.3. Spin Precession
3.4. Testing General Relativity with Post-Keplerain Parameters
3.5. Alternative Gravity Theories and Pulsar Timing
4. Gravitational Interaction of Strongly Self-Gravitating Bodies
4.1. Hulse-Taylor Pulsar and the Existence of Gravitational Waves
4.2. The Double Pulsar: A Wealth of Relativistic Effects
4.3. Spin Precession
4.3.1. PSR B1534+12
4.3.2. PSR J1906+0746
4.3.3. PSR J0737–3039B
5. Dipolar Gravitational Radiation
5.1. PSR J1738+0333: Constraining Dipolar Gravitational Radiation
5.2. Other Systems for Dipolar Radiation Tests
6. Universality of Free Fall
6.1. The Pulsar in a Stellar Triple System
6.2. UFF Towards Dark Matter
7. Gravitational Symmetries
7.1. Variation of the Gravitational Constant
7.2. Strong-Field Generalizations of PPN Parameters
8. Future Outlook
8.1. Time and Sensitivity
8.2. Complementary Information
8.3. New Laboratories & New Avenues
9. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Black hole |
DM | Dark matter |
EHT | Event Horizon Telescope |
EOS | Equation of state (for neutron stars) |
GPB | Gravity Probe B |
GR | General relativity |
GW | Gravitational wave |
LPI | Local position invariance |
LLI | Local Lorentz invariance |
LLR | Lunar Laser Ranging |
LOS | Line of sight |
MSP | Millisecond pulsar |
NS | Neutron star |
PK | Post-Keplerian |
PN | Post-Newtonian |
PPN | Parametrized post-Newtonian |
PTA | Pulsar timing array |
SEP | Strong equivalence principle |
SSB | Solar System barycenter |
TOA | Time of arrival (of a pulsar signal) |
UFF | Universality of free fall |
WD | White dwarf |
WEP | Weak equivalence principle |
References
- Einstein, A. The Field Equations of Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1915, 1915, 844–847. [Google Scholar]
- Einstein, A. Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1915, 1915, 831–839. [Google Scholar]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astropys. J. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR 1257+12. Nature 1992, 355, 145–147. [Google Scholar] [CrossRef]
- Hobbs, G.; Guo, L.; Caballero, R.N.; Coles, W.; Lee, K.J.; Manchester, R.N.; Reardon, D.J.; Matsakis, D.; Tong, M.L.; Arzoumanian, Z.; et al. A pulsar-based time-scale from the International Pulsar Timing Array. Mon. Not. R. Astron. Soc. 2020, 491, 5951–5965. [Google Scholar]
- Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1–124. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Perera, B.B.P.; DeCesar, M.E.; Demorest, P.B.; Kerr, M.; Lentati, L.; Nice, D.J.; Osłowski, S.; Ransom, S.M.; Keith, M.J.; Arzoumanian, Z.; et al. The International Pulsar Timing Array: Second data release. Mon. Not. R. Astron. Soc. 2019, 490, 4666–4687. [Google Scholar] [CrossRef]
- Damour, T.; Deruelle, N. General Relativistic Celestial Mechanics of Binary Systems. II. The Post-Newtonian Timing Formula. Ann. Inst. H. Poincaré (Phys. Théor.) 1986, 44, 263–292. [Google Scholar]
- Damour, T.; Taylor, J.H. Strong–Field Tests of Relativistic Gravity and Binary Pulsars. Phys. Rev. D 1992, 45, 1840–1868. [Google Scholar] [CrossRef] [PubMed]
- Blandford, R.; Teukolsky, S.A. Arrival-time analysis for a pulsar in a binary system. Astropys. J. 1976, 205, 580–591. [Google Scholar] [CrossRef]
- Kramer, M. Pulsars as probes of gravity and fundamental physics. Int. J. Mod. Phys. D 2016, 25, 1630029. [Google Scholar] [CrossRef]
- Dass, N.D.H.; Radhakrishnan, V. The new binary pulsar and the observation of gravitational spin precession. Astrophys. Lett. 1975, 16, 135–139. [Google Scholar]
- Smarr, L.L.; Blandford, R. The binary pulsar: Physical processes, possible companions and evolutionary histories. Astropys. J. 1976, 207, 574–588. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Romani, R.W.; Taylor, J.H. Evidence for geodetic spin precession in the binary pulsar 1913+16. Astropys. J. 1989, 347, 1030–1033. [Google Scholar] [CrossRef]
- Cordes, J.M.; Wasserman, I.; Blaskiewicz, M. Polarization of the binary radio pulsar 1913+16: Constraints on geodetic precession. Astropys. J. 1990, 349, 546–552. [Google Scholar] [CrossRef]
- Kramer, M. Determination of the Geometry of the PSR B1913+16 System by Geodetic Precession. Astropys. J. 1998, 509, 856–860. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, V.; Cooke, D.J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 1969, 3, 225–229. [Google Scholar]
- Kramer, M.; Wex, N. TOPICAL REVIEW: The double pulsar system: A unique laboratory for gravity. Class. Quantum Gravity 2009, 26, 073001. [Google Scholar] [CrossRef]
- Damour, T. The problem of motion in Newtonian and Einsteinian gravity. In Three Hundred Years of Gravitation; Cambridge University Press: Cambridge, UK, 1987; pp. 128–198. [Google Scholar]
- Damour, T.; Deruelle, N. General Relativistic Celestial Mechanics of Binary Systems. I. The Post-Newtonian Motion. Ann. Inst. H. Poincaré (Phys. Théor.) 1985, 43, 107–132. [Google Scholar]
- Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D. Tempo: Pulsar Timing Data Analysis. 2015. Available online: http://ascl.net/1509.002 (accessed on 15 August 2020).
- Peters, P.C.; Mathews, J. Gravitational Radiation from Point Masses in a Keplerian Orbit. Phys. Rev. 1963, 131, 435–440. [Google Scholar] [CrossRef]
- Peters, P.C. Gravitational Radiation and the Motion of Two Point Masses. Phys. Rev. 1964, 136, 1224–1232. [Google Scholar] [CrossRef]
- Einstein, A. Über Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1918, 1918, 154–167. [Google Scholar]
- Shapiro, I.I. Fourth Test of General Relativity. Phys. Rev. Lett. 1964, 13, 789. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 1975, 12, 329–335. [Google Scholar] [CrossRef]
- De Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc. 1916, 77, 155–184. [Google Scholar] [CrossRef] [Green Version]
- Fokker, A.D. De geodetische precessie: Een uitvloeisel van Einstein’s gravitatietheorie. Versl. Kon. Ak. Wet. 1920, 29, 611–621. [Google Scholar]
- Damour, T. Binary systems as test-beds of gravity theories. Physics of relativistic objects in compact binaries: From birth to coalescence. In Astrophysics and Space Science Library; Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 359, p. 1. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Damour, T. Theoretical aspects of the equivalence principle. Class. Quantum Gravity 2012, 29, 184001. [Google Scholar] [CrossRef]
- Hilbert, D. Die Grundlagen der Physik. Math. Ann. 1924, 92, 1–32. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein Tensor and Its Generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Lovelock, D. The Four-Dimensionality of Space and the Einstein Tensor. J. Math. Phys. 1972, 13, 874–876. [Google Scholar] [CrossRef]
- Navarro, J.; Sancho, J.B. On the naturalness of Einstein’s equation. J. Geom. Phys. 2008, 58, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 2015, 32, 243001. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K.I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Taylor, J.H.; Wolszczan, A.; Damour, T.; Weisberg, J.M. Experimental constraints on strong-field relativistic gravity. Nature 1992, 355, 132–136. [Google Scholar] [CrossRef]
- Barausse, E. Testing the strong equivalence principle with gravitational-wave observations of binary black holes. arXiv 2017, arXiv:1703.05699. [Google Scholar]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Damour, T.; Esposito-Farèse, G. Testing gravity to second post-Newtonian order: A field-theory approach. Phys. Rev. D 1996, 53, 5541–5578. [Google Scholar] [CrossRef] [Green Version]
- Eddington, A.S. The Mathematical Theory of Relativity; Cambridge University Press: Cambridge, UK, 1922. [Google Scholar]
- Damour, T.; Esposito-Farèse, G. Nonperturbative Strong-Field Effects in Tensor-Scalar Theories of Gravitation. Phys. Rev. Lett. 1993, 70, 2220–2223. [Google Scholar] [CrossRef]
- Eardley, D.M. Observable effects of a scalar gravitational field in a binary pulsar. Astropys. J. 1975, 196, L59. [Google Scholar] [CrossRef]
- Mirshekari, S.; Will, C.M. Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order. Phys. Rev. D 2013, 87, 084070. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M.; Zaglauer, H.W. Gravitational Radiation, Close Binary Systems, and the Brans-Dicke Theory of Gravity. Astropys. J. 1989, 346, 366–377. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 1992, 9, 2093–2176. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Tensor-Scalar Gravity and Binary-Pulsar Experiments. Phys. Rev. D 1996, 54, 1474–1491. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P. Schwerkraft und Weltall; Die Wissenschaft, Vieweg: Braunschweig, Germany, 1955. [Google Scholar]
- Fierz, M. Über die physikalische Deutung der erweiterten Gravitationstheorie P. Jordans. Helv. Phys. Acta 1956, 29, 128. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Will, C.M. Testing general relativity with compact-body orbits: A modified Einstein–Infeld–Hoffmann framework. Class. Quantum Gravity 2018, 35, 085001. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astropys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Oost, J.; Mukohyama, S.; Wang, A. Constraints on Einstein-aether theory after GW170817. Phys. Rev. D 2018, 97, 124023. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.H.; Hulse, R.A.; Fowler, L.A.; Gullahorn, G.E.; Rankin, J.M. Further observations of the binary pulsar PSR 1913+16. Astropys. J. 1976, 206, L53–L58. [Google Scholar] [CrossRef]
- Taylor, J.H.; Fowler, L.A.; McCulloch, P.M. Measurements of General Relativistic Effects in the Binary Pulsar PSR 1913+16. Nature 1979, 277, 437. [Google Scholar] [CrossRef]
- Taylor, J.H.; Weisberg, J.M. A new test of general relativity: Gravitational radiation and the binary pulsar PSR 1913+16. Astropys. J. 1982, 253, 908–920. [Google Scholar] [CrossRef]
- Taylor, J.H.; Weisberg, J.M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astropys. J. 1989, 345, 434–450. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Nice, D.J.; Taylor, J.H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16. Astropys. J. 2010, 722, 1030–1034. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astropys. J. 2016, 829, 55. [Google Scholar] [CrossRef] [Green Version]
- Shklovskii, I.S. Possible causes of the secular increase in pulsar periods. Sov. Astron. 1970, 13, 562–565. [Google Scholar]
- Damour, T.; Taylor, J.H. On the Orbital Period Change of the Binary Pulsar PSR 1913+16. Astropys. J. 1991, 366, 501–511. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Stanimirović, S.; Xilouris, K.; Hedden, A.; de la Fuente, A.; Anderson, S.B.; Jenet, F.A. Arecibo HI Absorption Measurements of Pulsars and the Electron Density at Intermediate Longitudes in the First Galactic Quadrant. Astropys. J. 2008, 674, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef]
- Lyne, A.G.; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, R.N.; Camilo, F.; McLaughlin, M.A.; Lorimer, D.R.; D’Amico, N.; Joshi, B.C.; et al. A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics. Science 2004, 303, 1153–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deller, A.T.; Bailes, M.; Tingay, S.J. Implications of a VLBI Distance to the Double Pulsar J0737-3039A/B. Science 2009, 323, 1327. [Google Scholar] [CrossRef] [PubMed]
- LIGO Scientific Collaboration; Virgo Collaboration; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; et al. Tests of General Relativity with GW170817. Phys. Rev. Lett. 2019, 123, 011102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LIGO Scientific Collaboration; Virgo Collaboration; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; et al. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Phys. Rev. D 2019, 100, 104036. [Google Scholar] [CrossRef] [Green Version]
- Kaspi, V.M.; Ransom, S.M.; Backer, D.C.; Ramachandran, R.; Demorest, P.; Arons, J.; Spitkovskty, A. Green Bank Telescope Observations of the Eclipse of Pulsar “A” in the Double Pulsar Binary PSR J0737-3039. Astropys. J. 2004, 613, L137–L140. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, M.A.; Kramer, M.; Lyne, A.G.; Lorimer, D.R.; Stairs, I.H.; Possenti, A.; Manchester, R.N.; Freire, P.C.C.; Joshi, B.C.; Burgay, M.; et al. The Double Pulsar System J0737-3039: Modulation of the Radio Emission from B by Radiation from A. Astropys. J. 2004, 613, L57–L60. [Google Scholar] [CrossRef]
- Breton, R.P. Radio Pulsars in Binary Systems. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2009. [Google Scholar]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astropys. J. 2019, 875, L1. [Google Scholar]
- Breton, R.P.; Kaspi, V.M.; Kramer, M.; McLaughlin, M.A.; Lyutikov, M.; Ransom, S.M.; Stairs, I.H.; Ferdman, R.D.; Camilo, F.; Possenti, A. Relativistic Spin Precession in the Double Pulsar. Science 2008, 321, 104. [Google Scholar] [CrossRef] [Green Version]
- Perera, B.B.P.; McLaughlin, M.A.; Kramer, M.; Stairs, I.H.; Ferdman, R.D.; Freire, P.C.C.; Possenti, A.; Breton, R.P.; Manchester, R.N.; Burgay, M.; et al. The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession. Astropys. J. 2010, 721, 1193–1205. [Google Scholar] [CrossRef]
- Ferdman, R.D.; Stairs, I.H.; Kramer, M.; Breton, R.P.; McLaughlin, M.A.; Freire, P.C.C.; Possenti, A.; Stappers, B.W.; Kaspi, V.M.; Manchester, R.N. The Double Pulsar: Evidence for Neutron Star Formation without an Iron Core-collapse Supernova. Astropys. J. 2013, 767, 85. [Google Scholar] [CrossRef]
- Damour, T.; Ruffini, R. Sur certaines vérifications nouvelles de la Relativité générale rendues possibles par la découverte d’un pulsar membre d’un système binaire. Acad. Sci. Paris Comptes Rendus Ser. Sci. Math. 1974, 279, 971–973. [Google Scholar]
- Weisberg, J.M.; Taylor, J.H. General Relativistic Geodetic Spin Precession in Binary Pulsar B1913+16: Mapping the Emission Beam in Two Dimensions. Astropys. J. 2002, 576, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, F.; Müller, J. Relativistic tests with lunar laser ranging. Class. Quantum Gravity 2018, 35, 035015. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; Debra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Wolszczan, A. A nearby 37.9 ms radio pulsar in a relativistic binary system. Nature 1991, 350, 688–690. [Google Scholar] [CrossRef]
- Fonseca, E.; Stairs, I.H.; Thorsett, S.E. A Comprehensive Study of Relativistic Gravity Using PSR B1534+12. Astropys. J. 2014, 787, 82. [Google Scholar] [CrossRef] [Green Version]
- Stairs, I.H.; Thorsett, S.E.; Arzoumanian, Z. Measurement of Gravitational Spin-Orbit Coupling in a Binary-Pulsar System. Phys. Rev. Lett. 2004, 93, 141101-1–141101-4. [Google Scholar] [CrossRef] [Green Version]
- Bailes, M. Geodetic precession in binary pulsars. Astron. Astropys. 1988, 202, 109–112. [Google Scholar]
- Van Leeuwen, J.; Kasian, L.; Stairs, I.H.; Lorimer, D.R.; Camilo, F.; Chatterjee, S.; Cognard, I.; Desvignes, G.; Freire, P.C.C.; Janssen, G.H.; et al. The Binary Companion of Young, Relativistic Pulsar J1906+0746. Astropys. J. 2015, 798, 118. [Google Scholar] [CrossRef]
- Desvignes, G.; Kramer, M.; Lee, K.; van Leeuwen, J.; Stairs, I.; Jessner, A.; Cognard, I.; Kasian, L.; Lyne, A.; Stappers, B.W. Radio emission from a pulsar’s magnetic pole revealed by general relativity. Science 2019, 365, 1013–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, M.A.; Lyne, A.G.; Lorimer, D.R.; Possenti, A.; Manchester, R.N.; Camilo, F.; Stairs, I.H.; Kramer, M.; Burgay, M.; D’Amico, N.; et al. The Double Pulsar System J0737-3039: Modulation of A by B at Eclipse. Astropys. J. 2004, 616, L131–L134. [Google Scholar] [CrossRef]
- Pani, P.; Berti, E. Slowly rotating neutron stars in scalar-tensor theories. Phys. Rev. D 2014, 90, 024025. [Google Scholar] [CrossRef] [Green Version]
- Freire, P.C.C.; Wex, N.; Esposito-Farèse, G.; Verbiest, J.P.W.; Bailes, M.; Jacoby, B.A.; Kramer, M.; Stairs, I.H.; Antoniadis, J.; Janssen, G.H. The relativistic pulsar-white dwarf binary PSR J1738+0333—II. The most stringent test of scalar-tensor gravity. Mon. Not. R. Astron. Soc. 2012, 423, 3328–3343. [Google Scholar] [CrossRef]
- Lange, C.; Camilo, F.; Wex, N.; Kramer, M.; Backer, D.; Lyne, A.; Doroshenko, O. Precision timing measurements of PSR J1012+5307. Mon. Not. R. Astron. Soc. 2001, 326, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, J.; van Kerkwijk, M.H.; Koester, D.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Kramer, M.; Bassa, C.G. The relativistic pulsar-white dwarf binary PSR J1738+0333—I. Mass determination and evolutionary history. Mon. Not. R. Astron. Soc. 2012, 423, 3316–3327. [Google Scholar] [CrossRef] [Green Version]
- Gérard, J.M.; Wiaux, Y. Gravitational dipole radiations from binary systems. Phys. Rev. D 2002, 66, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 448. [Google Scholar] [CrossRef] [Green Version]
- Goriely, S.; Chamel, N.; Pearson, J.M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 2013, 88, 024308. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. Neutron Star Structure and the Equation of State. Astropys. J. 2001, 550, 426–442. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Deller, A.T.; Freire, P.; Kaplan, D.L.; Lazio, T.J.W.; Shannon, R.; Stappers, B. Very Long Baseline Astrometry of PSR J1012+5307 and its Implications on Alternative Theories of Gravity. Astropys. J. 2020, 896, 85. [Google Scholar] [CrossRef]
- Cognard, I.; Freire, P.C.C.; Guillemot, L.; Theureau, G.; Tauris, T.M.; Wex, N.; Graikou, E.; Kramer, M.; Stappers, B.; Lyne, A.G.; et al. A Massive-born Neutron Star with a Massive White Dwarf Companion. Astropys. J. 2017, 844, 128. [Google Scholar] [CrossRef]
- Shibata, M.; Taniguchi, K.; Okawa, H.; Buonanno, A. Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Phys. Rev. D 2014, 89, 084005. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wex, N. Tests of gravitational symmetries with radio pulsars. Sci. China Phys. Mech. Astron. 2016, 59, 699501. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Sennett, N.; Buonanno, A.; Kramer, M.; Wex, N. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors. Phys. Rev. X 2017, 7, 041025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, W.; Liu, T.; Lin, K.; Zhang, C.; Zhao, X.; Zhang, S.; Zhu, T.; Wang, A. Constraints of General Screened Modified Gravities from Comprehensive Analysis of Binary Pulsars. Astropys. J. 2019, 874, 121. [Google Scholar] [CrossRef] [Green Version]
- Renn, J. The Genesis of General Relativity: Sources and Interpretations; Boston Studies in the Philosophy and History of Science; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Touboul, P.; Métris, G.; Rodrigues, M.; André, Y.; Baghi, Q.; Bergé, J.; Boulanger, D.; Bremer, S.; Chhun, R.; Christophe, B.; et al. Space test of the equivalence principle: First results of the MICROSCOPE mission. Class. Quantum Gravity 2019, 36, 225006. [Google Scholar] [CrossRef] [Green Version]
- Di Casola, E.; Liberati, S.; Sonego, S. Nonequivalence of equivalence principles. Am. J. Phys. 2015, 83, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Deruelle, N. Nordström’s scalar theory of gravity and the equivalence principle. Gen. Relativ. Gravit. 2011, 43, 3337–3354. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Schäfer, G. New Tests of the Strong Equivalence Principle Using Binary Pulsar Data. Phys. Rev. Lett. 1991, 66, 2549. [Google Scholar] [CrossRef]
- Wex, N. Testing relativistic gravity with radio pulsars. In Frontiers in Relativistic Celestial Mechanics: Applications and Experiments; Kopeikin, S.M., Ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014; Volume 2, Chapter 2; p. 39. [Google Scholar]
- Ransom, S.M.; Stairs, I.H.; Archibald, A.M.; Hessels, J.W.T.; Kaplan, D.L.; van Kerkwijk, M.H.; Boyles, J.; Deller, A.T.; Chatterjee, S.; Schechtman-Rook, A.; et al. A millisecond pulsar in a stellar triple system. Nature 2014, 505, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, P.C.C.; Kramer, M.; Wex, N. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quantum Gravity 2012, 29, 184007. [Google Scholar] [CrossRef] [Green Version]
- Archibald, A.M.; Gusinskaia, N.V.; Hessels, J.W.T.; Deller, A.T.; Kaplan, D.L.; Lorimer, D.R.; Lynch, R.S.; Ransom, S.M.; Stairs, I.H. Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 2018, 559, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Voisin, G.; Cognard, I.; Freire, P.C.C.; Wex, N.; Guillemot, L.; Desvignes, G.; Kramer, M.; Theureau, G. An improved test of the strong equivalence principle with the pulsar in a triple star system. Astron. Astropys. 2020, 638, A24. [Google Scholar] [CrossRef]
- Zhu, W.W.; Desvignes, G.; Wex, N.; Caballero, R.N.; Champion, D.J.; Demorest, P.B.; Ellis, J.A.; Janssen, G.H.; Kramer, M.; Krieger, A.; et al. Tests of gravitational symmetries with pulsar binary J1713+0747. Mon. Not. R. Astron. Soc. 2019, 482, 3249–3260. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. General relativity verified by a triple-star system. Nature 2018, 559, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Nordtvedt, K. Equivalence Principle for Massive Bodies. I. Phenomenology. Phys. Rev. 1968, 169, 1014–1016. [Google Scholar] [CrossRef]
- Genova, A.; Mazarico, E.; Goossens, S.; Lemoine, F.G.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission. Nat. Commun. 2018, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Carson, Z.; Seymour, B.C.; Yagi, K. Future prospects for probing scalar-tensor theories with gravitational waves from mixed binaries. Class. Quantum Gravity 2020, 37, 065008. [Google Scholar] [CrossRef] [Green Version]
- Seymour, B.C.; Yagi, K. Probing Massive Scalar Fields from a Pulsar in a Stellar Triple System. arXiv 2019, arXiv:1908.03353. [Google Scholar] [CrossRef]
- Barausse, E. Neutron star sensitivities in Hořava gravity after GW170817. Phys. Rev. D 2019, 100, 084053. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wex, N.; Kramer, M. Testing the Universality of Free Fall towards Dark Matter with Radio Pulsars. Phys. Rev. Lett. 2018, 120, 241104. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, L. New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension. Phys. Rev. D 2014, 90, 122009. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Bailey, Q.G. Testing the gravitational weak equivalence principle in the standard model extension with binary pulsars. Phys. Rev. D 2019, 99, 084017. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Nordtvedt, K. Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 1993, 48, 3436–3450. [Google Scholar] [CrossRef]
- Nordtvedt, K. Ġ/G and a Cosmological Acceleration of Gravitationally Compact Bodies. Phys. Rev. Lett. 1990, 65, 953–956. [Google Scholar] [CrossRef]
- Barker, B.M. General Scalar–Tensor Theory of Gravity with Constant G. Astropys. J. 1978, 219, 5–11. [Google Scholar] [CrossRef]
- Nordtvedt, K. Cosmological Time Evolution in the Newtonian Dynamics of Compact Celestial Bodies. Astropys. J. 1993, 407, 5. [Google Scholar] [CrossRef]
- Nordtvedt, K. Probing Gravity to the Second post-Newtonian Order and to one Part in 107 using the Spin Axis of the Sun. Astropys. J. 1987, 320, 871–874. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N. New limits on the violation of local position invariance of gravity. Class. Quantum Gravity 2013, 30, 165020. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Testing local Lorentz invariance of gravity with binary pulsar data. Phys. Rev. D 1992, 46, 4128–4132. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.F.; Damour, T. A new test of conservation laws and Lorentz invariance in relativistic gravity. Class. Quantum Gravity 1996, 13, 3121–3127. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Is momentum conserved? A test in the binary system PSR 1913+16. Astropys. J. 1992, 393, L59–L61. [Google Scholar] [CrossRef]
- Yagi, K.; Blas, D.; Barausse, E.; Yunes, N. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Phys. Rev. D 2014, 89, 084067. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wex, N. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quantum Gravity 2012, 29, 215018. [Google Scholar] [CrossRef]
- Shao, L.; Caballero, R.N.; Kramer, M.; Wex, N.; Champion, D.J.; Jessner, A. A new limit on local Lorentz invariance violation of gravity from solitary pulsars. Class. Quantum Gravity 2013, 30, 165019. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Zhao, J.; Shao, L.; Wex, N.; Kramer, M.; Ma, B.Q. Tests of Conservation Laws in Post-Newtonian Gravity with Binary Pulsars. Astropys. J. 2020, 898, 69. [Google Scholar] [CrossRef]
- Smits, R.; Tingay, S.J.; Wex, N.; Kramer, M.; Stappers, B. Prospects for accurate distance measurements of pulsars with the Square Kilometre Array: Enabling fundamental physics. Astron. Astropys. 2011, 528, A108. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Lee, K.; Xu, R. Advancing pulsar science with the FAST. Sci. China Phys. Mech. Astron. 2019, 63, 229531. [Google Scholar] [CrossRef] [Green Version]
- Bailes, M.; Jameson, A.; Abbate, F.; Barr, E.D.; Bhat, N.D.R.; Bondonneau, L.; Burgay, M.; Buchner, S.J.; Camilo, F.; Champion, D.J.; et al. The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime. Publ. Astron. Soc. Aust. 2020, 37, e028. [Google Scholar] [CrossRef]
- Hu, H.; Kramer, M.; Wex, N.; Champion, D.J.; Kehl, M.S. Constraining the dense matter equation-of-state with radio pulsars. Mon. Not. R. Astron. Soc. 2020, 497, 3118–3130. [Google Scholar] [CrossRef]
- Blanchet, L.; Schaefer, G. Higher order gravitational radiation losses in binary systems. Mon. Not. R. Astron. Soc. 1989, 239, 845–867. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Schäfer, G. Higher-Order Relativistic Periastron Advances and Binary Pulsars. Nuovo Cim. 1988, 101, 127. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Schutz, B.F. Constraining the Equation of State with Moment of Inertia Measurements. Astropys. J. 2005, 629, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Kehl, M.S.; Wex, N.; Kramer, M.; Liu, K. Future measurements of the Lense-Thirring effect in the Double Pulsar. In Fourteenth Marcel Grossmann Meeting—MG14; Bianchi, M., Jansen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2018; pp. 1860–1865. [Google Scholar]
- Stovall, K.; Freire, P.C.C.; Chatterjee, S.; Demorest, P.B.; Lorimer, D.R.; McLaughlin, M.A.; Pol, N.; van Leeuwen, J.; Wharton, R.S.; Allen, B.; et al. PALFA Discovery of a Highly Relativistic Double Neutron Star Binary. Astropys. J. 2018, 854, L22. [Google Scholar] [CrossRef]
- Cameron, A.D.; Champion, D.J.; Kramer, M.; Bailes, M.; Barr, E.D.; Bassa, C.G.; Bhandari, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; et al. The High Time Resolution Universe Pulsar Survey—XIII. PSR J1757-1854, the most accelerated binary pulsar. Mon. Not. R. Astron. Soc. 2018, 475, L57–L61. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astropys. 2016, 595, A1. [Google Scholar]
- Lazarus, P.; Freire, P.C.C.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; et al. Einstein@Home Discovery of a Double Neutron Star Binary in the PALFA Survey. Astropys. J. 2016, 831, 150. [Google Scholar] [CrossRef] [Green Version]
- Ferdman, R.D.; Freire, P.C.C.; Perera, B.B.P.; Pol, N.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Hessels, J.W.T.; Kaspi, V.M.; et al. Asymmetric mass ratios for bright double neutron-star mergers. Nature 2020, 583, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Wex, N.; Kopeikin, S. Frame dragging and other precessional effects in black hole-pulsar binaries. Astropys. J. 1999, 513, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Eatough, R.P.; Wex, N.; Kramer, M. Pulsar-black hole binaries: Prospects for new gravity tests with future radio telescopes. Mon. Not. R. Astron. Soc. 2014, 445, 3115–3132. [Google Scholar] [CrossRef] [Green Version]
- Seymour, B.; Yagi, K. Testing general relativity with black hole-pulsar binaries. Phys. Rev. D 2018, 98, 124007. [Google Scholar] [CrossRef] [Green Version]
- Barack, L.; Cardoso, V.; Nissanke, S.; Sotiriou, T.P.; Askar, A.; Belczynski, C.; Bertone, G.; Bon, E.; Blas, D.; Brito, R.; et al. Black holes, gravitational waves and fundamental physics: A roadmap. Class. Quantum Gravity 2019, 36, 143001. [Google Scholar] [CrossRef] [Green Version]
- Angélil, R.; Saha, P.; Merritt, D. Toward Relativistic Orbit Fitting of Galactic Center Stars and Pulsars. Astropys. J. 2010, 720, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wex, N.; Kramer, M.; Cordes, J.M.; Lazio, T.J.W. Prospects for Probing the Spacetime of Sgr A* with Pulsars. Astropys. J. 2012, 747, 1. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J.R.J.; Deane, R.; de Laurentis, M.; Desvignes, G.; et al. BlackHoleCam: Fundamental physics of the galactic center. Int. J. Mod. Phys. D 2017, 26, 1730001. [Google Scholar] [CrossRef]
- Psaltis, D.; Wex, N.; Kramer, M. A Quantitative Test of the No-hair Theorem with Sgr A* Using Stars, Pulsars, and the Event Horizon Telescope. Astropys. J. 2016, 818, 121. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Nacir, D.L.; Sibiryakov, S. Secular effects of ultralight dark matter on binary pulsars. Phys. Rev. D 2020, 101, 063016. [Google Scholar] [CrossRef] [Green Version]
- Pletsch, H.J.; Clark, C.J. Optimized Blind Gamma-Ray Pulsar Searches at Fixed Computing Budget. Astropys. J. 2014, 795, 75. [Google Scholar] [CrossRef] [Green Version]
- Knispel, B.; Allen, B.; Cordes, J.M.; Deneva, J.S.; Anderson, D.; Aulbert, C.; Bhat, N.D.R.; Bock, O.; Bogdanov, S.; Brazier, A.; et al. Pulsar Discovery by Global Volunteer Computing. Science 2010, 329, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eatough, R.P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M.J.; Stappers, B.W.; Lyne, A.G. Selection of radio pulsar candidates using artificial neural networks. Mon. Not. R. Astron. Soc. 2010, 407, 2443–2450. [Google Scholar] [CrossRef] [Green Version]
- Stappers, B.; Kramer, M. An Update on TRAPUM. MeerKAT Science: On the Pathway to the SKA. Proc. Sci. 2016, 277, 9. [Google Scholar]
- Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; et al. The International Pulsar Timing Array project: Using pulsars as a gravitational wave detector. Class. Quantum Gravity 2010, 27, 084013. [Google Scholar] [CrossRef]
- Lee, K.J. Pulsar timing arrays and gravity tests in the radiative regime. Class. Quantum Gravity 2013, 30, 224016. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Siemens, X. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays. Living Rev. Relativ. 2013, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. D 2014, 90, 124063. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T.P.; Berti, E. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling. Phys. Rev. Lett. 2018, 120, 131104. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, K.; Stein, L.C. Black hole scalar charge from a topological horizon integral in Einstein- dilaton-Gauss-Bonnet gravity. Phys. Rev. D 2018, 98, 021503. [Google Scholar] [CrossRef] [Green Version]
- Hermes, J.J.; Kilic, M.; Brown, W.R.; Winget, D.E.; Allende Prieto, C.; Gianninas, A.; Mukadam, A.S.; Cabrera-Lavers, A.; Kenyon, S.J. Rapid Orbital Decay in the 12.75-minute Binary White Dwarf J0651+2844. Astropys. J. 2012, 757, L21. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Virgo Collaboration; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Gravity Collaboration; Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; Brandner, W.; et al. Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astropys. 2018, 615, L15. [Google Scholar]
- Gravity Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clénet, Y.; de Zeeuw, P.T.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astropys. 2020, 636, L5. [Google Scholar]
1 | Another triple system is located in a globular cluster with a white dwarf and a planetary mass system. |
2 | We will generally use to indicate a structure dependent strong-field quantity. |
3 | Strictly speaking, the radio signals propagate in a spacetime sourced by the pulsar and the companion. However, to leading order the effect on the signal propagation (Shapiro delay) is dominated by the potentials of the companion. |
4 | In principle, a difference in the proper rotation of the masses can also create a gravitational dipole (see e.g., [93]), which however is generally negligible for the typical rotations found in double-NS binary pulsar. |
5 | Nordström’s conformally-flat scalar theory also fulfils the SEP [110], but is excluded by Solar System experiments as, for instance, it predicts no light deflection. |
6 | Often the UFF is formulated in terms of the equivalence between the inertial and the (passive) gravitational mass of a body. However, that concept breaks down in the presence of strongly self-gravitating bodies, as then can contain significant cross terms of the two bodies [3]. |
7 | |
8 | |
9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wex, N.; Kramer, M. Gravity Tests with Radio Pulsars. Universe 2020, 6, 156. https://doi.org/10.3390/universe6090156
Wex N, Kramer M. Gravity Tests with Radio Pulsars. Universe. 2020; 6(9):156. https://doi.org/10.3390/universe6090156
Chicago/Turabian StyleWex, Norbert, and Michael Kramer. 2020. "Gravity Tests with Radio Pulsars" Universe 6, no. 9: 156. https://doi.org/10.3390/universe6090156
APA StyleWex, N., & Kramer, M. (2020). Gravity Tests with Radio Pulsars. Universe, 6(9), 156. https://doi.org/10.3390/universe6090156