Higher Regularity, Inverse and Polyadic Semigroups
Abstract
:1. Introduction
2. Generalized n-Regular Elements in Semigroups
2.1. Binary n-Regular Single Elements
- (i)
- Higher regularity generalization: instead of one element , use an n-tuple and the corresponding product .
- (ii)
- Higher arity generalization: instead of the binary product , consider the polyadic (or k-ary semigroup) product with the multiplication .
2.2. Polyadic n-Regular Single Elements
- (i)
- Write down an expression using the operations manifestly.
- (ii)
- Change arities from the binary values to the needed higher values.
- (iii)
- Take into account the corresponding changes of tuple lengths according to the concrete argument numbers of operations.
3. Higher n-Inverse Semigroups
3.1. Higher n-Regular Semigroups
- (i)
- The pure 2-regular semigroup is pure n-regular.
- (ii)
- The pure 2-regular semigroup is cancellative.
3.2. Idempotents and Higher n-Inverse Semigroups
4. Higher n-Inverse Polyadic Semigroups
4.1. Higher n-Regular Polyadic Semigroups
4.2. Sandwich Polyadic n-Regularity
4.3. Sandwich Regularity with Generalized Idempotents
Funding
Acknowledgments
Conflicts of Interest
References
- von Neumann, J. On regular rings. Proc. Nat. Acad. Sci. USA 1936, 22, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Clifford, A.H.; Preston, G.B. The Algebraic Theory of Semigroups; American Mathematical Society: Providence, RI, USA, 1961; Volume 1. [Google Scholar]
- Ljapin, E.S. Semigroups; American Mathematical Society: Providence, RI, USA, 1968; p. 592. [Google Scholar]
- Howie, J.M. An Introduction to Semigroup Theory; Academic Press: London, UK, 1976; p. 270. [Google Scholar]
- Grillet, P.A. Semigroups. An Introduction to the Structure Theory; Dekker: New York, NY, USA, 1995; p. 416. [Google Scholar]
- Lawson, M.V. Inverse Semigroups: The Theory of Partial Symmetries; World Scientific: Singapore, 1998; p. 412. [Google Scholar]
- Petrich, M. Inverse Semigroups; Wiley: New York, NY, USA, 1984; p. 214. [Google Scholar]
- Duplij, S. On semi-supermanifolds. Pure Math. Appl. 1998, 9, 283–310. [Google Scholar]
- Duplij, S.; Marcinek, W. Higher Regularity And Obstructed Categories. In Exotic Algebraic and Geometric Structures in Theoretical Physics; Duplij, S., Ed.; Nova Publishers: New York, NY, USA, 2018; pp. 15–24. [Google Scholar]
- Duplij, S.; Marcinek, W. Regular Obstructed Categories and Topological Quantum Field Theory. J. Math. Phys. 2002, 43, 3329–3341. [Google Scholar] [CrossRef] [Green Version]
- Duplij, S.; Marcinek, W. Semisupermanifolds and regularization of categories, modules, algebras and Yang-Baxter equation. In Supersymmetry and Quantum Field Theory; Elsevier Science Publishers: Amsterdam, The Netherlands, 2001; pp. 110–115. [Google Scholar]
- Duplij, S.; Marcinek, W. Braid Semistatistics And Doubly Regular R-Matrix. In Exotic Algebraic and Geometric Structures in Theoretical Physics; Duplij, S., Ed.; Nova Publishers: New York, NY, USA, 2018; pp. 77–86. [Google Scholar]
- Duplij, S. Higher braid groups and regular semigroups from polyadic-binary correspondence. Mathematics 2021, 9, 972. [Google Scholar] [CrossRef]
- Gilbert, N.D. Flows on regular semigroups. Appl. Categ. Str. 2003, 11, 147–155. [Google Scholar] [CrossRef]
- Wazzan, S.A. Flows on classes of regular semigroups and Cauchy categories. J. Math. 2019, 2019, 8027391. [Google Scholar] [CrossRef]
- Sioson, F.M. On regular algebraic systems. Proc. Jpn. Acad. 1963, 39, 283–286. [Google Scholar]
- Gluskin, L.M. On positional operatives. Soviet Math. Dokl. 1964, 5, 1001–1004. [Google Scholar]
- Monk, J.D.; Sioson, F. m-semigroups, semigroups and function representations. Fundam. Math. 1966, 59, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Zupnik, D. Polyadic semigroups. Publ. Math. (Debrecen) 1967, 14, 273–279. [Google Scholar]
- Post, E.L. Polyadic groups. Trans. Amer. Math. Soc. 1940, 48, 208–350. [Google Scholar] [CrossRef]
- Slipenko, A.K. Regular operatives and ideal equivalences. Doklady AN Ukr. SSR. Seriya A. Fiz-Mat i Tekhn Nauki 1977, 3, 218–221. [Google Scholar]
- Kolesnikov, O.V. Inverse n-semigroups. Comment. Math. Prace Mat. 1979, 21, 101–108. [Google Scholar]
- Duplij, S. Polyadic Algebraic Structures And Their Representations. In Exotic Algebraic and Geometric Structures in Theoretical Physics; Duplij, S., Ed.; Nova Publishers: New York, NY, USA, 2018; pp. 251–308. [Google Scholar]
- Thierrin, G. Sur les éléments inversifs et les éléments unitaires d’un demi-groupe inversif. C. R. Acad. Sci. Paris 1952, 234, 33–34. [Google Scholar]
- Vagner, V.V. Generalized groups. Doklady Akad. Nauk SSSR (N.S.) 1952, 84, 1119–1122. [Google Scholar]
- Dörnte, W. Unterschungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 1929, 29, 1–19. [Google Scholar] [CrossRef]
- Pop, A.; Pop, M.S. On generalized algebraic structures. Creative Math. Inf. 2010, 19, 184–190. [Google Scholar]
- Green, J.A. On the structure of semigroups. Ann. Math. 1951, 54, 163–172. [Google Scholar] [CrossRef]
- Liber, A.E. On symmetric generalized groups. Mat. Sb. (N.S.) 1953, 33, 531–544. [Google Scholar]
- Liber, A.E. On the theory of generalized groups. Doklady Akad. Nauk SSSR (N.S.) 1954, 97, 25–28. [Google Scholar]
- Munn, W.D.; Penrose, R. A note on inverse semigroups. Proc. Camb. Phil. Soc. 1955, 51, 396–399. [Google Scholar] [CrossRef]
- Schein, B.M. On the theory of generalized groups and generalized heaps. Theory Semigroups Its Appl. 1965, 1, 286–324. [Google Scholar]
- Higgins, P.M. Techniques of Semigroup Theory; Oxford University Press: Oxford, UK, 1992; p. 254. [Google Scholar]
- Duplij, S. Supermatrix representations of semigroup bands. Pure Math. Appl. 1996, 7, 235–261. [Google Scholar]
- Yaglom, I.M. Complex Numbers in Geometry; Academic Press: New York, NY, USA; London, UK, 1968; p. xii+243. [Google Scholar]
- Duplij, S. Polyadic integer numbers and finite (m,n)-fields. p-Adic Numbers Ultrametric Anal. Appl. 2017, 9, 257–281. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duplij, S. Higher Regularity, Inverse and Polyadic Semigroups. Universe 2021, 7, 379. https://doi.org/10.3390/universe7100379
Duplij S. Higher Regularity, Inverse and Polyadic Semigroups. Universe. 2021; 7(10):379. https://doi.org/10.3390/universe7100379
Chicago/Turabian StyleDuplij, Steven. 2021. "Higher Regularity, Inverse and Polyadic Semigroups" Universe 7, no. 10: 379. https://doi.org/10.3390/universe7100379
APA StyleDuplij, S. (2021). Higher Regularity, Inverse and Polyadic Semigroups. Universe, 7(10), 379. https://doi.org/10.3390/universe7100379