Scalar Induced Gravitational Waves Review
Abstract
:1. Introduction
1.1. Induced GWs History
- –
- General semi-analytical formulation: Since induced GWs are a second order effect one needs to integrate in time and momenta over the linear evolution of primordial fluctuations. The analytical transfer functions for radiation domination are derived in Refs. [62,63] and later generalized to constant equation of state parameter in Ref. [64];
- –
- Induced GWs for different expansion histories and different contents of the universe: Induced GWs may have been generated in a non-radiation dominated universe. This leaves characteristic signatures in the induced GW spectrum. Studies in early matter era can be found in Refs. [65,66,67]. The extension to an early PBH dominated epoch is investigated in Refs. [68,69,70,71]. More general thermal histories are studied in Refs. [64,72,73,74,75,76]. The impact of additional free streaming particles is studied in Ref. [77];
- –
- Induced GW spectral features: There are cases where the induced GW spectrum may be investigated semi-analytically. These are for example, the low frequency tail [74,78,79], the UV tail [80,81] and the log-normal peak in the primordial spectrum [82]. Furthermore, the primordial spectrum may also present oscillatory features which are captured into the induced GW spectrum [83,84,85,86,87]. On top of that, large primordial non-Gaussianities may have a non-trivial impact on the induced GW spectrum [81,88,89,90,91,92,93]. Other effects include: anisotropic non-gaussianities, which may be a source of superhorizon tensor modes [94], resonances that may occur during inflation, which enhance the induced GW spectrum [95,96,97,98], and non-Bunch Davies initial conditions in inflation [99], although the latter does not yield an observable signature;
- –
- Explanations of current observations: Induced GWs have been extensively used as counterpart of the PBH scenario as a totality or a fraction of dark matter. For example, the induced GWs from various inflationary models can be found in Refs. [100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118] and [62,116,119,120] in the context of Higgs inflation. In particular, the large induced GW counterpart to PBH as the totality of dark matter is studied in Refs. [88,110,121,122,123,124,125]. Other possibilities include an explanation to the LIGO observations [121,126,127,128] and the NANOGrav results [129,130,131,132,133,134,135];
- –
- Current and future GW constraints: It is important to place constraints on the current absence of induced GWs and also asses future capabilities to constraint/find different models. A study using current PTA and LIGO data on SGWBs can be found in Refs. [136,137,138,139] and an analysis of future GW prospects in Refs. [33,75,140,141,142,143,144,145,146];
- –
- –
- The gauge issue of induced GWs: Tensor modes are subject to gauge ambiguities at second order due to mode mixing. Since the work of Hwang, Jeong and Noh [149] in 2017 there has been an extensive discussion on the gauge issue of induced GWs [150,151,152,153,154,155,156,157,158,159,160,161,162]. The source of the problem and the applicability of predictions is by now well understood, although the gauge issue persists in the strictest sense.
1.2. Structure and Scope of the Review
- Cosmological perturbation theory. The classical reviews on cosmological perturbation theory at linear order are the one by Kodama and Sasaki [12] and by Mukhanov, Feldman and Brandenberger [163]. A typical reference for second order cosmological perturbation theory is the review by Malik and Wands [164]. Since then there have been many other reviews on cosmological perturbation theory. Some that we found particularly up to date and useful are Refs. [165,166,167,168]. For a take on multi-field inflation we suggest Ref. [169]. For primordial features in the primordial spectrum we refer the reader to Ref. [170];
- Stochastic GW backgrounds. Induced GWs are not the only source of GW backgrounds. Reviews on the different cosmic and astrophysical sources can be found in the review by Caprini and Figueroa [29] and by Christensen [171]. A useful collection of cosmic GW spectra can be found in Kuroyanagi, Chiba and Takahashi [172], although it is technically not a review. A review focused on GWs from inflation is given by Guzzetti, Bartolo, Liguori and Matarrese [173];
- Primordial black holes. The literature on primordial black holes is very vast and currently under refinement. A review that has been used in particular is the one by Sasaki, Suyama, Tanaka and Yokoyama [174]. Other interesting reviews are Refs. [175,176,177,178]. A complementary review on induced GWs with more focus on the PBH counterpart is given by Yuan and Huang [179];
- Primordial non-Gaussianity. Although quantum fluctuations during inflation are drawn from a Gaussian distribution, they can develop small departures from such Gaussian distribution due to gravitational or general interactions. The reader interested in primordial non-Gaussianities may check the reviews in the context of inflation and CMB observations, e.g., [180,181,182,183];
- Alternative expansion histories. A recent review encompassing many of the new physics of a primordial universe which is not filled with radiation is given in Ref. [1].
2. Estimates and Intuitive Picture
2.1. The Spectral Density of GWs in Cosmology
2.2. GWs Induced by Primordial Fluctuations
2.2.1. The IR Tail
2.2.2. The near Peak Regime
2.3. Primordial Black Hole Counterpart
3. General Formalism
3.1. Derivation from the Action
3.2. General Solutions
3.3. Inclusion of Primordial Non-Gaussianity
4. Analytical Transfer Functions
4.1. First Order Solutions
4.2. General Subhorizon Kernel
4.2.1. Matching to Radiation Domination
4.2.2. Resonances
4.2.3. Infrared Regime
4.3. Superhorizon Kernel Approximation
Matching to Radiation Domination
5. Typical Induced GW Spectra
5.1. The GW Spectral Density Today
5.2. Dirac Delta Peak
5.3. Log-Normal Peak
5.4. Broken Power-Law
5.4.1. Alternative Expansion Histories
5.4.2. Scale Invariant Spectrum
5.5. Oscillatory Features
5.6. Impact of Non-Gaussianities
6. The Dust Dominated Universe
6.1. General Dust Domination
6.2. PBH Dominated Era
7. The Gauge Issue
7.1. The Origin of the Issue
7.1.1. The Definition of Tensor Modes Is Gauge Dependent
7.1.2. The Definition of GW Energy Density Is Gauge Dependent
7.2. Current “Solutions”
- (i)
- we look at really subhorizon scales (), where cosmology should be less relevant;
- (ii)
- there is (barely) no source of induced GWs (48), so that induced tensor modes are freely propagating GWs;
- (iii)
- we use a coordinate system suitable for small distances calculations, so that we are not confused by strange coordinate artefacts.
8. Other GW Sources Related to PBH Formation
9. Current and Future Observational Prospects
- –
- Ref. [129] found a negligible amount of PBH in LIGO region but the PBH could be the seeds of supermassive black holes.
- –
- –
- Ref. [130] showed that the induced GWs from a flat primordial spectrum could explain all dark matter;
- –
- –
- In a different direction, Refs. [132,133] studied the induced GWs from a peaked primordial spectrum in a non-radiation dominated universe. They both find that a soft equation of state seems to be preferred. In particular, Ref. [132] use the IR tail of the induced GW spectrum from a very peaked primordial spectrum (see Section 5) to fit the NANOGrav results. They found that the 1 contours on the spectral tilt translate to bounds for the equation state parameter as ;
- –
- Ref. [81] uses the UV tail of the induced GW spectrum from a broken power-law primordial spectrum. They concluded that the NANOGrav results imply a small non-gaussianity parameter ;
10. Summary of Main Formulas
10.1. General Equation of State
10.1.1. Radiation Domination
10.1.2. Stiff Fluid (Kinetic) Domination
10.1.3. Soft Fluid Domination
10.1.4. Pressure-Less Fluid Domination
10.1.5. Negative EoS Fluid Domination
10.2. Dust Domination
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GW | Gravitational Wave |
PBH | Primordial Black Hole |
SGWB | Stochastic Gravitational Wave Background |
CMB | Cosmic Microwave Background |
FLRW | Friedmann-Lemaître-Robertson-Walker |
ADM | Arnowitt-Deser-Misner |
WKB | Wentzel–Kramers–Brillouin |
LIGO | Laser Interferometer Gravitational-Wave Observatory |
KAGRA | Kamioka Gravitational Wave Detector |
LISA | Laser Interferometer Space Antenna |
PTA | Pulsar Timing Array |
DECIGO | Deci-hertz Interferometer Gravitational wave Observatory |
AION | Atom Interferometer Observatory and Network |
MAGIS | Matter-wave Atomic Gradiometer Interferometric Sensor |
ET | Einstein Telescope |
OGLE | Optical Gravitational Lensing Experiment |
rms | root mean squared |
NG | Non-Gaussianity |
Appendix A. Useful Formulas and Numerical Values
Appendix B. Green’s Function Method
Appendix C. ADM Formalism
Appendix D. Fourier Conventions and Polarization Tensors
Appendix D.1. Spherical Parametrisation
Appendix E. Formulas in a General Gauge
Appendix E.1. Background
Appendix E.2. First Order
Appendix E.3. Second Order
Appendix F. Bessel Functions
Appendix G. Integrals with Two and Three Bessel Functions
Appendix G.1. Superhorizon Approximation
Appendix G.2. Subhorizon Approximation
Appendix H. Associated Legendre Functions
Appendix H.1. Asymptotic Limits
Appendix H.1.1. Useful Relations
Appendix H.1.2. The Resonance Limit
1 | Observations of the first photons that decoupled from the thermal plasma after neutral hydrogen formed. |
2 | To have a quantitative idea, the comoving wavenumber corresponding to the size of Hubble horizon at the time of neutrino decoupling is roughly . CMB observations constraint the primordial fluctuations roughly on scales . Any information on much smaller scales, that is for , is erased by complicated astrophysical processes. On the largest scales we are limited by cosmic variance. CMB spectral distortions might probe down to . |
3 | Take one source per Hubble patch and count how many Hubble patches at a given redshift fit the current universe. The number actually grows as and we are talking about GWs generated at . On top of that, the angular resolution of GW detectors is not enough to pinpoint cosmic GWs generated in tiny Hubble patches. |
4 | For example, GWs generated when the universe had a temperature of around and , respectively have a typical (peak) frequency roughly around and . |
5 | We have that the linear terms in the perturbative expansion in vanish after averaging. |
6 | |
7 | We are assuming that the tensor modes are drawn from a Gaussian distribution. This is essentially the case when they are generated by quantum fluctuations during inflation. Then, the expectation of a two-point correlation function of a random variable that follows a Gaussian distribution is proportional to the Dirac delta. |
8 | |
9 | From the critical collapse we know there will be some dispersion in the masses. For simplicity, we neglect it here. |
10 | Although we will abuse the notation “Newtonian gauge”, the Newtonian gauge is actually defined as the shear-free slicing at the linear level. Our gauge choice reduces to the definition of the Newtonian gauge at first order but there might be some subtleties if one wants to relate them at second order. |
11 | As in the tensor modes we have that the dimensionless power spectrum is given by
|
12 | Although the name is not informative at all, as strictly speaking any distribution which is not a Gaussian is non-Gaussian, in cosmology the term “non-Gaussianity” is often used to indicate small departures from a Gaussian distribution, e.g., by a small but non-vanishing 3-point correlation function. For a detailed explanation, I recommend to read E. A. Lim’s notes on primordial NG as of August 2021: https://nms.kcl.ac.uk/eugene.lim/AdvCos/lecture2.pdf. |
13 | |
14 | Since there are more possible contractions in the non-gaussian case with respect to the gaussian one, the numerical factors of the NG contribution will be larger. |
15 | For reference note that the radiation-matter equality corresponds to . This means that at the transition to the cold dark matter dominated epoch such induced GWs are already freely propagating GWs and can be treated as radiation. |
16 | For instance, one has arbitrary constant w and for a canonical scalar field in an exponential potential [231]. |
17 | Isocurvature fluctuations are fluctuations that leave the total energy density of matter homogeneous. Thus, they are only possible in multi-fluid systems where the density fluctuations of one fluid can be compensated by the density fluctuations of another. |
18 | |
19 | We used that . |
20 | For example, this is also the case of a matter inhomogeneity in the universe, such as a galaxy, where the matter density is clearly larger than the mean density of the universe but the gravitational potential can be considered as a perturbation. In this perturbative expansion one recovers Newtonian gravity which is very accurate in galactic scales. |
21 | It is parametrised as the effective number of neutrinos below the electron-positron annihilation temperature. In this way, the factor is the relative factor of the energy density of fermions with respect to bosons. The factor is the relative factor of the entropy of neutrinos and photons. Since and we get a power of . This is well explained in Baumann’s lecture notes as of August 2021 http://cosmology.amsterdam/education/cosmology/. |
22 | Note that one obtains similar bounds from studies of the CMB [301,302]. However, these CMB constraints consider gravitational waves as a dark radiation component and depend on the initial conditions of such dark radiation fluctuations. As an order of magnitude estimate we limit ourselves to the BBN constraints [299,300] on the fraction of extra relativistic particles. We thank an anonymous referee for clarifying this point. |
23 | |
24 | That is assuming an early universe dominated by radiation and using the estimates of Section 2.3. |
25 | In case of doubt about conventions and normalisation conditions, it is advisable to treat as a field operator and express the Fourier expansion in the Fock representation. If the polarization tensors are complex, such as in circular polarization, the general normalization conditions are , where an asterisk refers to complex conjugate. We thank M. Sasaki for explaining this point. |
References
- Allahverdi, R.; Amin, M.A.; Berlin, A.; Bernal, N.; Byrnes, C.T.; Delos, M.S.; Erickcek, A.L.; Escudero, M.; Figueroa, D.G.; Freese, K.; et al. The First Three Seconds: A Review of Possible Expansion Histories of the Early Universe. Open J. Astrophys. 2021, 4. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y. et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef] [Green Version]
- Brout, R.; Englert, F.; Gunzig, E. The Creation of the Universe as a Quantum Phenomenon. Ann. Phys. 1978, 115, 78. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Sato, K. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. R. Astron. Soc. 1981, 195, 467–479. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Sasaki, M. Gauge Invariant Scalar Perturbations in the New Inflationary Universe. Prog. Theor. Phys. 1983, 70, 394. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Sasaki, M. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Lentati, L.; Taylor, S.R.; Mingarelli, C.M.F.; Sesana, A.; Sanidas, S.A.; Vecchio, A.; Caballero, R.N.; Lee, K.J.; van Haasteren, R.; Babak, S.; et al. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background. Mon. Not. R. Astron. Soc. 2015, 453, 2576–2598. [Google Scholar] [CrossRef]
- Shannon, R.M.; Ravi, V.; Lentati, L.T.; Lasky, P.D.; Hobbs, G.; Kerr, M.; Manchester, R.N.; Coles, W.A.; Levin, Y.; Bailes, M.; et al. Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 2015, 349, 1522–1525. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z. et al. [NANOGrav Collaboration] The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background. Astrophys. J. 2016, 821, 13. [Google Scholar] [CrossRef]
- Qin, W.; Boddy, K.K.; Kamionkowski, M.; Dai, L. Pulsar-timing arrays, astrometry, and gravitational waves. Phys. Rev. 2019, D99, 063002. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, K.; Arzoumanian, Z.; Baker, P.T.; Brazier, A.; Brinson, M.R.; Brook, P.R.; Burke-Spolaor, S.; Chatterjee, S.; Cordes, J.M.; Cornish, N.J.; et al. The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries. Astrophys. J. 2019, 880, 2. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z. et al. [NANOGrav Collaboration] The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett. 2020, 905, L34. [Google Scholar] [CrossRef]
- Maggiore, M.; Broeck, C.V.D.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. JCAP 2020, 2020, 050. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P. et al. [LISA Collaboration] Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Barausse, E.; Berti, E.; Hertog, T.; Hughes, S.A.; Jetzer, P.; Pani, P.; Sotiriou, T.P.; Tamanini, N.; Witek, H.; Yagi, K.; et al. Prospects for Fundamental Physics with LISA. Gen. Rel. Grav. 2020, 52, 81. [Google Scholar] [CrossRef]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 2001, 87, 221103. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. 2011, D83, 044011, Erratum in Phys. Rev. 2017, D95, 109901. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Musha, M.; Kawano, I.; Yokoyama, J.; Tanaka, T.; Ioka, K.; Akutsu, T.; et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. arXiv 2020, arXiv:2006.13545. [Google Scholar]
- Badurina, L.; Bentine, E.; Blas, D.; Bongs, K.; Bortoletto, D.; Bowcock, T.; Bridges, K.; Bowden, W.; Buchmueller, O.; Burrage, C.; et al. AION: An Atom Interferometer Observatory and Network. arXiv 2019, arXiv:1911.11755. [Google Scholar] [CrossRef]
- Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Zhang, Y.Z. Taiji Program: Gravitational-Wave Sources. arXiv 2018, arXiv:1807.09495. [Google Scholar]
- Luo, J. et al. [TianQin Collaboration] TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef] [Green Version]
- Thrane, E.; Romano, J.D. Sensitivity curves for searches for gravitational-wave backgrounds. Phys. Rev. 2013, D88, 124032. [Google Scholar] [CrossRef] [Green Version]
- Caprini, C.; Figueroa, D.G. Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav. 2018, 35, 163001. [Google Scholar] [CrossRef] [Green Version]
- Gow, A.D.; Byrnes, C.T.; Cole, P.S.; Young, S. The power spectrum on small scales: Robust constraints and comparing PBH methodologies. JCAP 2021, 2021, 002. [Google Scholar] [CrossRef]
- Chluba, J.; Kogut, A.; Patil, S.P.; Abitbol, M.H.; Aghanim, N.; Ali-Haïmoud, Y.; Amin, M.A.; Aumont, J.; Bartolo, N.; Basu, K.; et al. Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics: Astro2020 Science White Paper. Bull. Am. Astron. Soc. 2019, 51, 184. [Google Scholar]
- Kite, T.; Ravenni, A.; Patil, S.P.; Chluba, J. Bridging the gap: Spectral distortions meet gravitational waves. arXiv 2020, arXiv:2010.00040. [Google Scholar]
- Unal, C.; Kovetz, E.D.; Patil, S.P. Multi-messenger Probes of Inflationary Fluctuations and Primordial Black Holes. arXiv 2020, arXiv:2008.11184. [Google Scholar]
- Tomita, K. Non-Linear Theory of Gravitational Instability in the Expanding Universe. Progress of Theoretical Physics 1967, 37, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Matarrese, S.; Pantano, O.; Saez, D. A General relativistic approach to the nonlinear evolution of collisionless matter. Phys. Rev. D 1993, 47, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Matarrese, S.; Pantano, O.; Saez, D. General relativistic dynamics of irrotational dust: Cosmological implications. Phys. Rev. Lett. 1994, 72, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Matarrese, S.; Mollerach, S.; Bruni, M. Second order perturbations of the Einstein-de Sitter universe. Phys. Rev. D 1998, 58, 043504. [Google Scholar] [CrossRef]
- Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef] [Green Version]
- Baumann, D.; Steinhardt, P.J.; Takahashi, K.; Ichiki, K. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D 2007, 76, 084019. [Google Scholar] [CrossRef] [Green Version]
- Mangilli, A.; Bartolo, N.; Matarrese, S.; Riotto, A. The impact of cosmic neutrinos on the gravitational-wave background. Phys. Rev. D 2008, 78, 083517. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Serra, P.; Cooray, A.; Ichiki, K.; Baumann, D. Cosmic shear from scalar-induced gravitational waves. Phys. Rev. D 2008, 77, 103515. [Google Scholar] [CrossRef] [Green Version]
- Martineau, P.; Brandenberger, R. A Back-reaction Induced Lower Bound on the Tensor-to-Scalar Ratio. Mod. Phys. Lett. A 2008, 23, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Matarrese, S.; Riotto, A.; Vaihkonen, A. The Maximal Amount of Gravitational Waves in the Curvaton Scenario. Phys. Rev. D 2007, 76, 061302. [Google Scholar] [CrossRef] [Green Version]
- Boubekeur, L.; Creminelli, P.; Norena, J.; Vernizzi, F. Action approach to cosmological perturbations: The 2nd order metric in matter dominance. JCAP 2008, 2008, 028. [Google Scholar] [CrossRef]
- Saito, R.; Yokoyama, J. Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 2009, 102, 161101, Erratum in Phys. Rev. Lett. 2011, 107, 069901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, R.; Yokoyama, J. Gravitational-Wave Constraints on the Abundance of Primordial Black Holes. Prog. Theor. Phys. 2010, 123, 867–886, Erratum in Prog. Theor. Phys. 2011, 126, 351–352. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, E.; Klimai, P. Induced gravitational wave background and primordial black holes. Phys. Rev. D 2010, 81, 023517. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, E.V.; Klimai, P.A. Bound on induced gravitational wave background from primordial black holes. JETP Lett. 2010, 91, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, E.; Klimai, P. Constraints on the induced gravitational wave background from primordial black holes. Phys. Rev. D 2011, 83, 083521. [Google Scholar] [CrossRef] [Green Version]
- Assadullahi, H.; Wands, D. Constraints on primordial density perturbations from induced gravitational waves. Phys. Rev. D 2010, 81, 023527. [Google Scholar] [CrossRef] [Green Version]
- Assadullahi, H.; Wands, D. Gravitational waves from an early matter era. Phys. Rev. D 2009, 79, 083511. [Google Scholar] [CrossRef] [Green Version]
- Arroja, F.; Assadullahi, H.; Koyama, K.; Wands, D. Cosmological matching conditions for gravitational waves at second order. Phys. Rev. D 2009, 80, 123526. [Google Scholar] [CrossRef] [Green Version]
- Alabidi, L.; Kohri, K.; Sasaki, M.; Sendouda, Y. Observable Spectra of Induced Gravitational Waves from Inflation. JCAP 2012, 2012, 017. [Google Scholar] [CrossRef]
- Alabidi, L.; Kohri, K.; Sasaki, M.; Sendouda, Y. Observable induced gravitational waves from an early matter phase. JCAP 2013, 2013, 033. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kitajima, N.; Yokoyama, S. Gravitational waves from a curvaton model with blue spectrum. JCAP 2013, 2013, 042. [Google Scholar] [CrossRef] [Green Version]
- Nakama, T.; Suyama, T. Primordial black holes as a novel probe of primordial gravitational waves. Phys. Rev. D 2015, 92, 121304. [Google Scholar] [CrossRef] [Green Version]
- Nakama, T.; Suyama, T. Primordial black holes as a novel probe of primordial gravitational waves. II: Detailed analysis. Phys. Rev. D 2016, 94, 043507. [Google Scholar] [CrossRef] [Green Version]
- Suyama, T.; Yokoyama, J. Temporal enhancement of super-horizon curvature perturbations from decays of two curvatons and its cosmological consequences. Phys. Rev. D 2011, 84, 083511. [Google Scholar] [CrossRef] [Green Version]
- Saga, S.; Ichiki, K.; Sugiyama, N. Impact of anisotropic stress of free-streaming particles on gravitational waves induced by cosmological density perturbations. Phys. Rev. D 2015, 91, 024030. [Google Scholar] [CrossRef] [Green Version]
- Fidler, C.; Pettinari, G.W.; Beneke, M.; Crittenden, R.; Koyama, K.; Wands, D. The intrinsic B-mode polarisation of the Cosmic Microwave Background. JCAP 2014, 2014, 011. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [LIGO Scientific and Virgo Collaborations] GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. JCAP 2018, 2018, 012. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Terada, T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys. Rev. D 2018, 97, 123532. [Google Scholar] [CrossRef] [Green Version]
- Domènech, G. Induced gravitational waves in a general cosmological background. Int. J. Mod. Phys. D 2020, 29, 2050028. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Kohri, K.; Nakama, T.; Terada, T. Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from an Early Matter Era to the Radiation Era. JCAP 2019, 2019, 071. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Kohri, K.; Nakama, T.; Terada, T. Enhancement of Gravitational Waves Induced by Scalar Perturbations due to a Sudden Transition from an Early Matter Era to the Radiation Era. Phys. Rev. D 2019, 100, 043532. [Google Scholar] [CrossRef] [Green Version]
- Dalianis, I.; Kouvaris, C. Gravitational Waves from Density Perturbations in an Early Matter Domination Era. J. Cosmol. Astropart. Phys. 2021, 7, 46. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Terada, T.; Yanagida, T.T. Gravitational Wave Production right after a Primordial Black Hole Evaporation. Phys. Rev. D 2020, 101, 123533. [Google Scholar] [CrossRef]
- Papanikolaou, T.; Vennin, V.; Langlois, D. Gravitational waves from a universe filled with primordial black holes. arXiv 2020, arXiv:2010.11573. [Google Scholar]
- Domènech, G.; Lin, C.; Sasaki, M. Gravitational wave constraints on the primordial black hole dominated early universe. arXiv 2020, arXiv:2012.08151. [Google Scholar]
- Domènech, G.; Takhistov, V.; Sasaki, M. Exploring Evaporating Primordial Black Holes with Gravitational Waves. arXiv 2021, arXiv:2105.06816. [Google Scholar]
- Hajkarim, F.; Schaffner-Bielich, J. Thermal History of the Early Universe and Primordial Gravitational Waves from Induced Scalar Perturbations. Phys. Rev. D 2020, 101, 043522. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Mohanty, S.; Parashari, P. Primordial black holes and gravitational waves in nonstandard cosmologies. Phys. Rev. D 2020, 102, 043522. [Google Scholar] [CrossRef]
- Domènech, G.; Pi, S.; Sasaki, M. Induced gravitational waves as a probe of thermal history of the universe. JCAP 2020, 2020, 017. [Google Scholar] [CrossRef]
- Dalianis, I.; Kritos, K. Exploring the Spectral Shape of Gravitational Waves Induced by Primordial Scalar Perturbations and Connection with the Primordial Black Hole Scenarios. Phys. Rev. D 2021, 103, 023505. [Google Scholar] [CrossRef]
- Abe, K.T.; Tada, Y.; Ueda, I. Induced gravitational waves as a cosmological probe of the sound speed during the QCD phase transition. arXiv 2020, arXiv:2010.06193. [Google Scholar]
- Hook, A.; Marques-Tavares, G.; Racco, D. Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe. JHEP 2021, 02, 117. [Google Scholar] [CrossRef]
- Cai, R.G.; Pi, S.; Sasaki, M. Universal infrared scaling of gravitational wave background spectra. Phys. Rev. D 2020, 102, 083528. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Log-dependent slope of scalar induced gravitational waves in the infrared regions. Phys. Rev. D 2020, 101, 043019. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Guo, Z.K.; Cai, R.G. Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models. Phys. Rev. D 2020, 101, 083535. [Google Scholar] [CrossRef] [Green Version]
- Atal, V.; Domènech, G. Probing non-Gaussianities with the high frequency tail of induced gravitational waves. arXiv 2021, arXiv:2103.01056. [Google Scholar]
- Pi, S.; Sasaki, M. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak. JCAP 2020, 2020, 037. [Google Scholar] [CrossRef]
- Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Resonant multiple peaks in the induced gravitational waves. JCAP 2019, 2019, 013. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, J.; Renaux-Petel, S.; Witkowski, L.T. Oscillations in the stochastic gravitational wave background from sharp features and particle production during inflation. arXiv 2020, arXiv:2012.02761. [Google Scholar]
- Braglia, M.; Hazra, D.K.; Finelli, F.; Smoot, G.F.; Sriramkumar, L.; Starobinsky, A.A. Generating PBHs and small-scale GWs in two-field models of inflation. JCAP 2020, 2020, 001. [Google Scholar] [CrossRef]
- Braglia, M.; Chen, X.; Hazra, D.K. Probing Primordial Features with the Stochastic Gravitational Wave Background. arXiv 2020, arXiv:2012.05821. [Google Scholar]
- Fumagalli, J.; Renaux-Petel, S.; Witkowski, L.T. Resonant features in the stochastic gravitational wave background. arXiv 2021, arXiv:2105.06481. [Google Scholar]
- Garcia-Bellido, J.; Peloso, M.; Unal, C. Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter. JCAP 2017, 2017, 013. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unal, C. Imprints of Primordial Non-Gaussianity on Gravitational Wave Spectrum. Phys. Rev. D 2019, 99, 041301. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Huang, Q.G. Gravitational waves induced by the local-type non-Gaussian curvature perturbations. arXiv 2020, arXiv:2007.10686. [Google Scholar]
- Adshead, P.; Lozanov, K.D.; Weiner, Z.J. Non-Gaussianity and the induced gravitational wave background. arXiv 2021, arXiv:2105.01659. [Google Scholar]
- Ragavendra, H.V. Accounting for scalar non-Gaussianity in secondary gravitational waves. arXiv 2021, arXiv:2108.04193. [Google Scholar]
- Ota, A. Induced superhorizon tensor perturbations from anisotropic non-Gaussianity. Phys. Rev. D 2020, 101, 103511. [Google Scholar] [CrossRef]
- Cai, Y.F.; Chen, C.; Tong, X.; Wang, D.G.; Yan, S.F. When Primordial Black Holes from Sound Speed Resonance Meet a Stochastic Background of Gravitational Waves. Phys. Rev. D 2019, 100, 043518. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Guo, Z.K.; Liu, J.; Liu, L.; Yang, X.Y. Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. JCAP 2020, 2020, 013. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.; Cai, Y.F.; Sasaki, M.; Pi, S. Primordial black holes and gravitational waves from resonant amplification during inflation. Phys. Rev. D 2020, 102, 103527. [Google Scholar] [CrossRef]
- Cai, Y.F.; Jiang, J.; Sasaki, M.; Vardanyan, V.; Zhou, Z. Beating the Lyth bound by parametric resonance during inflation. arXiv 2021, arXiv:2105.12554. [Google Scholar]
- Ragavendra, H.V.; Sriramkumar, L.; Silk, J. Could PBHs and secondary GWs have originated from squeezed initial states? arXiv 2020, arXiv:2011.09938. [Google Scholar]
- Garcia-Bellido, J.; Peloso, M.; Unal, C. Gravitational waves at interferometer scales and primordial black holes in axion inflation. JCAP 2016, 2016, 031. [Google Scholar] [CrossRef]
- Di, H.; Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. JCAP 2018, 2018, 007. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Kawasaki, M.; Nakatsuka, H. Formation of primordial black holes in an axionlike curvaton model. Phys. Rev. D 2018, 98, 083508. [Google Scholar] [CrossRef] [Green Version]
- Byrnes, C.T.; Cole, P.S.; Patil, S.P. Steepest growth of the power spectrum and primordial black holes. JCAP 2019, 2019, 028. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.J.; Yang, X.Y. Gravitational waves induced from string axion model of inflation. Int. J. Mod. Phys. A 2019, 34, 1950213. [Google Scholar] [CrossRef]
- Xu, W.T.; Liu, J.; Gao, T.J.; Guo, Z.K. Gravitational waves from double-inflection-point inflation. Phys. Rev. D 2020, 101, 023505. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, R. Primordial black hole formation in inflationary α-attractor models. Phys. Rev. D 2020, 101, 023533. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.S.; Sahni, V. Primordial Black Holes from a tiny bump/dip in the Inflaton potential. JCAP 2020, 2020, 007. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Wu, P.; Yu, H. Scalar induced gravitational waves in inflation with gravitationally enhanced friction. Phys. Rev. D 2020, 101, 023529. [Google Scholar] [CrossRef] [Green Version]
- Özsoy, O.; Tasinato, G. On the slope of the curvature power spectrum in non-attractor inflation. JCAP 2020, 2020, 048. [Google Scholar] [CrossRef]
- Özsoy, O.; Lalak, Z. Primordial black holes as dark matter and gravitational waves from bumpy axion inflation. JCAP 2021, 2021, 040. [Google Scholar] [CrossRef]
- Gao, Q.; Gong, Y.; Yi, Z. Primordial black holes and secondary gravitational waves from natural inflation. arXiv 2020, arXiv:2012.03856. [Google Scholar]
- Bhaumik, N.; Jain, R.K. Stochastic induced gravitational waves and lowest mass limit of primordial black holes with the effects of reheating. arXiv 2020, arXiv:2009.10424. [Google Scholar]
- Lin, J.; Gao, Q.; Gong, Y.; Lu, Y.; Zhang, C.; Zhang, F. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 2020, 101, 103515. [Google Scholar] [CrossRef]
- Ragavendra, H.V.; Saha, P.; Sriramkumar, L.; Silk, J. PBHs and secondary GWs from ultra slow roll and punctuated inflation. arXiv 2020, arXiv:2008.12202. [Google Scholar]
- Yi, Z.; Gao, Q.; Gong, Y.; Zhu, Z.h. Primordial black holes and secondary gravitational waves from inflationary model with a non-canonical kinetic term. arXiv 2020, arXiv:2011.10606. [Google Scholar]
- Gao, Q. Primordial black holes and secondary gravitational waves from chaotic inflation. arXiv 2021, arXiv:2102.07369. [Google Scholar]
- Gao, T.J.; Yang, X.Y. Double peaks of gravitational wave spectrum induced from inflection point inflation. arXiv 2021, arXiv:2101.07616. [Google Scholar]
- Solbi, M.; Karami, K. Primordial black holes and induced gravitational waves in Galileon inflation. arXiv 2021, arXiv:2102.05651. [Google Scholar]
- Drees, M.; Xu, Y. Overshooting, Critical Higgs Inflation and Second Order Gravitational Wave Signatures. Eur. Phys. J. C 2021, 81, 182. [Google Scholar] [CrossRef]
- Yi, Z.; Gong, Y.; Wang, B.; Zhu, Z.h. Primordial Black Holes and Secondary Gravitational Waves from Higgs field. arXiv 2020, arXiv:2007.09957. [Google Scholar]
- Kohri, K.; Terada, T. Primordial Black Hole Dark Matter and LIGO/Virgo Merger Rate from Inflation with Running Spectral Indices: Formation in the Matter- and/or Radiation-Dominated Universe. Class. Quant. Grav. 2018, 35, 235017. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; De Luca, V.; Franciolini, G.; Lewis, A.; Peloso, M.; Riotto, A. Primordial Black Hole Dark Matter: LISA Serendipity. Phys. Rev. Lett. 2019, 122, 211301. [Google Scholar] [CrossRef] [PubMed]
- Bartolo, N.; De Luca, V.; Franciolini, G.; Peloso, M.; Racco, D.; Riotto, A. Testing primordial black holes as dark matter with LISA. Phys. Rev. D 2019, 99, 103521. [Google Scholar] [CrossRef] [Green Version]
- Tada, Y.; Yokoyama, S. Primordial black hole tower: Dark matter, earth-mass, and LIGO black holes. Phys. Rev. D 2019, 100, 023537. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, G.; Rey, J.; Taoso, M.; Urbano, A. Primordial black holes as dark matter and gravitational waves from single-field polynomial inflation. JCAP 2020, 2020, 025. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys. Rev. D 2017, 95, 123510. [Google Scholar] [CrossRef] [Green Version]
- Nakama, T.; Silk, J.; Kamionkowski, M. Stochastic gravitational waves associated with the formation of primordial black holes. Phys. Rev. D 2017, 95, 043511. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. Primordial black holes for the LIGO events in the axionlike curvaton model. Phys. Rev. D 2018, 97, 123512. [Google Scholar] [CrossRef] [Green Version]
- Vaskonen, V.; Veermäe, H. Did NANOGrav see a signal from primordial black hole formation? Phys. Rev. Lett. 2021, 126, 051303. [Google Scholar] [CrossRef]
- De Luca, V.; Franciolini, G.; Riotto, A. NANOGrav Data Hints at Primordial Black Holes as Dark Matter. Phys. Rev. Lett. 2021, 126, 041303. [Google Scholar] [CrossRef]
- Kohri, K.; Terada, T. Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves. Phys. Lett. B 2021, 813, 136040. [Google Scholar] [CrossRef]
- Domènech, G.; Pi, S. NANOGrav Hints on Planet-Mass Primordial Black Holes. arXiv 2020, arXiv:2010.03976. [Google Scholar]
- Bhattacharya, S.; Mohanty, S.; Parashari, P. Implications of the NANOGrav result on primordial gravitational waves in nonstandard cosmologies. arXiv 2020, arXiv:2010.05071. [Google Scholar]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. NANOGrav results and LIGO-Virgo primordial black holes in axion-like curvaton model. arXiv 2020, arXiv:2011.01270. [Google Scholar]
- Yi, Z.; Zhu, Z.H. NANOGrav signal and LIGO-Virgo Primordial Black Holes from Higgs inflation. arXiv 2021, arXiv:2105.01943. [Google Scholar]
- Orlofsky, N.; Pierce, A.; Wells, J.D. Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves. Phys. Rev. D 2017, 95, 063518. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Pulsar Timing Array Constraints on the Induced Gravitational Waves. JCAP 2019, 2019, 059. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.C.; Yuan, C.; Huang, Q.G. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. Phys. Rev. Lett. 2020, 124, 251101. [Google Scholar] [CrossRef]
- Chen, Z.C.; Huang, Q.G. Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer. JCAP 2020, 2020, 039. [Google Scholar] [CrossRef]
- Inomata, K.; Nakama, T. Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum. Phys. Rev. D 2019, 99, 043511. [Google Scholar] [CrossRef] [Green Version]
- Clesse, S.; García-Bellido, J.; Orani, S. Detecting the Stochastic Gravitational Wave Background from Primordial Black Hole Formation. arXiv 2018, arXiv:1812.11011. [Google Scholar]
- Wang, S.; Terada, T.; Kohri, K. Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations. Phys. Rev. D 2019, 99, 103531, Erratum in Phys. Rev. D 2020, 101, 069901. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Probing primordial–black-hole dark matter with scalar induced gravitational waves. Phys. Rev. D 2019, 100, 081301. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Gong, Y.; Yi, Z.; Zhang, F. Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves. JCAP 2019, 2019, 031. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ali, A.; Gong, Y.; Lin, J.; Lu, Y. On the waveform of the scalar induced gravitational waves. arXiv 2020, arXiv:2008.12961. [Google Scholar]
- Wang, Y.T.; Cai, Y.; Liu, Z.G.; Piao, Y.S. Probing the primordial universe with gravitational waves detectors. JCAP 2017, 2017, 010. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Domcke, V.; Figueroa, D.G.; García-Bellido, J.; Peloso, M.; Pieroni, M.; Ricciardone, A.; Sakellariadou, M.; Sorbo, L.; Tasinato, G. Probing non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA. JCAP 2018, 2018, 034. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Bertacca, D.; De Luca, V.; Franciolini, G.; Matarrese, S.; Peloso, M.; Ricciardone, A.; Riotto, A.; Tasinato, G. Gravitational wave anisotropies from primordial black holes. JCAP 2020, 2020, 028. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.C.; Jeong, D.; Noh, H. Gauge dependence of gravitational waves generated from scalar perturbations. Astrophys. J. 2017, 842, 46. [Google Scholar] [CrossRef] [Green Version]
- Domènech, G.; Sasaki, M. Hamiltonian approach to second order gauge invariant cosmological perturbations. Phys. Rev. D 2018, 97, 023521. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.O. Analytic integral solutions for induced gravitational waves. arXiv 2019, arXiv:1909.12708. [Google Scholar]
- Tomikawa, K.; Kobayashi, T. Gauge dependence of gravitational waves generated at second order from scalar perturbations. Phys. Rev. D 2020, 101, 083529. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A. On the Gauge Invariance of Cosmological Gravitational Waves. JCAP 2020, 2020, 014. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Terada, T. Gauge Independence of Induced Gravitational Waves. Phys. Rev. D 2020, 101, 023523. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Scalar induced gravitational waves in different gauges. Phys. Rev. D 2020, 101, 063018. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Wang, S.; Zhu, Q.H. Gauge Invariant Second Order Gravitational Waves. arXiv 2020, arXiv:2009.11994. [Google Scholar]
- Chang, Z.; Wang, S.; Zhu, Q.H. Gauge invariance of the second order cosmological perturbations. arXiv 2020, arXiv:2009.11025. [Google Scholar]
- Lu, Y.; Ali, A.; Gong, Y.; Lin, J.; Zhang, F. Gauge transformation of scalar induced gravitational waves. Phys. Rev. D 2020, 102, 083503. [Google Scholar] [CrossRef]
- Ali, A.; Gong, Y.; Lu, Y. Gauge transformation of scalar induced tensor perturbation during matter domination. Phys. Rev. D 2021, 103, 043516. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, S.; Zhu, Q.H. On the Gauge Invariance of Scalar Induced Gravitational Waves: Gauge Fixings Considered. arXiv 2020, arXiv:2010.01487. [Google Scholar]
- Domènech, G.; Sasaki, M. Approximate gauge independence of the induced gravitational wave spectrum. arXiv 2020, arXiv:2012.14016. [Google Scholar]
- Gurian, J.; Jeong, D.; Hwang, J.C.; Noh, H. Gauge-Invariant Tensor Perturbations Induced from Baryon-CDM Relative Velocity and the B-mode Polarization of the CMB. arXiv 2021, arXiv:2104.03330. [Google Scholar]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 1992, 215, 203–333. [Google Scholar] [CrossRef] [Green Version]
- Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rept. 2009, 475, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Durrer, R. Cosmological perturbation theory. Lect. Notes Phys. 2004, 653, 31–70. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D. Lectures on inflation and cosmological perturbations. Lect. Notes Phys. 2010, 800, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Baumann, D. Physics of the Large and the Small: TASI 09. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, USA, 1–26 June 2009; 2009; pp. 523–686. [Google Scholar] [CrossRef]
- Piattella, O.F. Lecture Notes in Cosmology; UNITEXT for Physics; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.O. Multi-field inflation and cosmological perturbations. Int. J. Mod. Phys. D 2016, 26, 1740003. [Google Scholar] [CrossRef]
- Chen, X. Primordial Features as Evidence for Inflation. JCAP 2012, 2012, 038. [Google Scholar] [CrossRef]
- Christensen, N. Stochastic Gravitational Wave Backgrounds. Rept. Prog. Phys. 2019, 82, 016903. [Google Scholar] [CrossRef] [Green Version]
- Kuroyanagi, S.; Chiba, T.; Takahashi, T. Probing the Universe through the Stochastic Gravitational Wave Background. JCAP 2018, 2018, 038. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S. Gravitational waves from inflation. Riv. Nuovo Cim. 2016, 39, 399–495. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Primordial Black Holes. Res. Astron. Astrophys. 2010, 10, 495–528. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on Primordial Black Holes. arXiv 2020, arXiv:2002.12778. [Google Scholar]
- Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Ann. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Green, A.M.; Kavanagh, B.J. Primordial Black Holes as a dark matter candidate. J. Phys. G 2021, 48, 4. [Google Scholar] [CrossRef]
- Yuan, C.; Huang, Q.G. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves. arXiv 2021, arXiv:2103.04739. [Google Scholar]
- Komatsu, E. Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background. Class. Quant. Grav. 2010, 27, 124010. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Matarrese, S.; Riotto, A. Non-Gaussianity and the Cosmic Microwave Background Anisotropies. Adv. Astron. 2010, 2010, 157079. [Google Scholar] [CrossRef] [Green Version]
- Byrnes, C.T.; Choi, K.Y. Review of local non-Gaussianity from multi-field inflation. Adv. Astron. 2010, 2010, 724525. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K. Non-Gaussianity of quantum fields during inflation. Class. Quant. Grav. 2010, 27, 124001. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Maggiore, M. Gravitational Waves. Vol. 1: Theory and Experiments; Oxford Master Series in Physics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Isaacson, R.A. Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics. Phys. Rev. 1968, 166, 1263–1271. [Google Scholar] [CrossRef]
- Isaacson, R.A. Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Ef fective Stress Tensor. Phys. Rev. 1968, 166, 1272–1279. [Google Scholar] [CrossRef]
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Nakamura, T.; Tsubono, K.; Kanda, N.; Tanaka, T.; Yokoyama, J.; Funaki, I.; et al. The Japanese space gravitational wave antenna: DECIGO. Class. Quant. Grav. 2011, 28, 094011. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S. Black holes in the early Universe. Mon. Not. R. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Crawford, M.; Schramm, D.N. Spontaneous Generation of Density Perturbations in the Early Universe. Nature 1982, 298, 538–540. [Google Scholar] [CrossRef]
- Kodama, H.; Sasaki, M.; Sato, K. Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition. Prog. Theor. Phys. 1982, 68, 1979. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Vilenkin, A.; Zhang, J. Black holes and the multiverse. JCAP 2016, 2016, 064. [Google Scholar] [CrossRef] [Green Version]
- Cotner, E.; Kusenko, A. Primordial black holes from supersymmetry in the early universe. Phys. Rev. Lett. 2017, 119, 031103. [Google Scholar] [CrossRef] [Green Version]
- Cotner, E.; Kusenko, A.; Sasaki, M.; Takhistov, V. Analytic Description of Primordial Black Hole Formation from Scalar Field Fragmentation. JCAP 2019, 2019, 077. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Rubio, J.; Wetterich, C. Primordial black holes from fifth forces. Phys. Rev. D 2018, 97, 081302. [Google Scholar] [CrossRef] [Green Version]
- Savastano, S.; Amendola, L.; Rubio, J.; Wetterich, C. Primordial dark matter halos from fifth forces. Phys. Rev. D 2019, 100, 083518. [Google Scholar] [CrossRef] [Green Version]
- Flores, M.M.; Kusenko, A. Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling. Phys. Rev. Lett. 2021, 126, 041101. [Google Scholar] [CrossRef]
- Shibata, M.; Sasaki, M. Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity. Phys. Rev. D 1999, 60, 084002. [Google Scholar] [CrossRef] [Green Version]
- Nakama, T.; Harada, T.; Polnarev, A.G.; Yokoyama, J. Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation. JCAP 2014, 2014, 037. [Google Scholar] [CrossRef] [Green Version]
- Harada, T.; Yoo, C.M.; Nakama, T.; Koga, Y. Cosmological long-wavelength solutions and primordial black hole formation. Phys. Rev. D 2015, 91, 084057. [Google Scholar] [CrossRef] [Green Version]
- Escrivà, A.; Romano, A.E. Effects of the shape of curvature peaks on the size of primordial black holes. JCAP 2021, 2021, 066. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Novikov, I.D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Sov. Astron. 1967, 10, 602. [Google Scholar]
- Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
- Meszaros, P. The behaviour of point masses in an expanding cosmological substratum. Astron. Astrophys. 1974, 37, 225–228. [Google Scholar]
- Carr, B.J. The Primordial black hole mass spectrum. Astrophys. J. 1975, 201, 1–19. [Google Scholar] [CrossRef]
- Khlopov, M.; Malomed, B.; Zeldovich, I. Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. R. Astron. Soc. 1985, 215, 575–589. [Google Scholar] [CrossRef]
- Niemeyer, J.C.; Jedamzik, K. Dynamics of primordial black hole formation. Phys. Rev. D 1999, 59, 124013. [Google Scholar] [CrossRef] [Green Version]
- Musco, I.; Miller, J.C.; Rezzolla, L. Computations of primordial black hole formation. Class. Quant. Grav. 2005, 22, 1405–1424. [Google Scholar] [CrossRef] [Green Version]
- Musco, I.; Miller, J.C.; Polnarev, A.G. Primordial black hole formation in the radiative era: Investigation of the critical nature of the collapse. Class. Quant. Grav. 2009, 26, 235001. [Google Scholar] [CrossRef]
- Musco, I.; Miller, J.C. Primordial black hole formation in the early universe: Critical behaviour and self-similarity. Class. Quant. Grav. 2013, 30, 145009. [Google Scholar] [CrossRef] [Green Version]
- Harada, T.; Yoo, C.M.; Kohri, K. Threshold of primordial black hole formation. Phys. Rev. D 2013, 88, 084051, Erratum in Phys. Rev. D 2014, 89, 029903. [Google Scholar] [CrossRef] [Green Version]
- Escrivà, A.; Germani, C.; Sheth, R.K. Universal threshold for primordial black hole formation. Phys. Rev. D 2020, 101, 044022. [Google Scholar] [CrossRef] [Green Version]
- Musco, I.; De Luca, V.; Franciolini, G.; Riotto, A. Threshold for primordial black holes. II. A simple analytic prescription. Phys. Rev. D 2021, 103, 063538. [Google Scholar] [CrossRef]
- Young, S.; Musso, M. Application of peaks theory to the abundance of primordial black holes. JCAP 2020, 2020, 022. [Google Scholar] [CrossRef]
- Escrivà, A.; Germani, C.; Sheth, R.K. Analytical thresholds for black hole formation in general cosmological backgrounds. JCAP 2021, 2021, 030. [Google Scholar] [CrossRef]
- Kehagias, A.; Musco, I.; Riotto, A. Non-Gaussian Formation of Primordial Black Holes: Effects on the Threshold. JCAP 2019, 2019, 029. [Google Scholar] [CrossRef] [Green Version]
- Atal, V.; Cid, J.; Escrivà, A.; Garriga, J. PBH in single field inflation: The effect of shape dispersion and non-Gaussianities. JCAP 2020, 2020, 022. [Google Scholar] [CrossRef]
- Yoo, C.M.; Gong, J.O.; Yokoyama, S. Abundance of primordial black holes with local non-Gaussianity in peak theory. JCAP 2019, 2019, 033. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, F.; Taoso, M.; Urbano, A. Solving peak theory in the presence of local non-gaussianities. arXiv 2021, arXiv:2102.04084. [Google Scholar]
- Young, S.; Musco, I.; Byrnes, C.T. Primordial black hole formation and abundance: Contribution from the non-linear relation between the density and curvature perturbation. JCAP 2019, 2019, 012. [Google Scholar] [CrossRef]
- Gourgoulhon, E. 3 + 1 formalism and bases of numerical relativity. arXiv 2007, arXiv:0703035. [Google Scholar]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Rel. Grav. 2008, 40, 1997–2027. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Maldacena, J.M. Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 2003, 05, 013. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Maldacena, J. Cosmological Collider Physics. arXiv 2015, arXiv:1503.08043. [Google Scholar]
- Lyth, D.H.; Malik, K.A.; Sasaki, M. A General proof of the conservation of the curvature perturbation. JCAP 2005, 2005, 004. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Oxford, UK, 2005. [Google Scholar]
- Komatsu, E.; Spergel, D.N.; Wandelt, B.D. Measuring primordial non-Gaussianity in the cosmic microwave background. Astrophys. J. 2005, 634, 14–19. [Google Scholar] [CrossRef]
- Lucchin, F.; Matarrese, S. Power Law Inflation. Phys. Rev. D 1985, 32, 1316. [Google Scholar] [CrossRef] [PubMed]
- Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Gervois, A.; Navelet, H. Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 1985, 26, 633–644. [Google Scholar] [CrossRef]
- Carrilho, P.; Malik, K.A.; Mulryne, D.J. Dissecting the growth of the power spectrum for primordial black holes. Phys. Rev. D 2019, 100, 103529. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Sugiyama, N.; Yanagida, T. Primordial black hole formation in a double inflation model in supergravity. Phys. Rev. D 1998, 57, 6050–6056. [Google Scholar] [CrossRef] [Green Version]
- Frampton, P.H.; Kawasaki, M.; Takahashi, F.; Yanagida, T.T. Primordial Black Holes as All Dark Matter. JCAP 2010, 2010, 023. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kitajima, N.; Yanagida, T.T. Primordial black hole formation from an axionlike curvaton model. Phys. Rev. D 2013, 87, 063519. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary Primordial Black Holes as All Dark Matter. Phys. Rev. D 2017, 96, 043504. [Google Scholar] [CrossRef] [Green Version]
- Pi, S.; Zhang, Y.l.; Huang, Q.G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. JCAP 2018, 2018, 042. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Tong, X.; Wang, D.G.; Yan, S.F. Primordial Black Holes from Sound Speed Resonance during Inflation. Phys. Rev. Lett. 2018, 121, 081306. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Cai, Y.F. Primordial black holes from sound speed resonance in the inflaton-curvaton mixed scenario. JCAP 2019, 2019, 068. [Google Scholar] [CrossRef] [Green Version]
- Ashoorioon, A.; Rostami, A.; Firouzjaee, J.T. EFT compatible PBHs: Effective spawning of the seeds for primordial black holes during inflation. JHEP 2021, 07, 087. [Google Scholar] [CrossRef]
- Chen, C.; Ma, X.H.; Cai, Y.F. Dirac-Born-Infeld realization of sound speed resonance mechanism for primordial black holes. Phys. Rev. D 2020, 102, 063526. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Linde, A.D.; Wands, D. Density perturbations and black hole formation in hybrid inflation. Phys. Rev. D 1996, 54, 6040–6058. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, J. Chaotic new inflation and formation of primordial black holes. Phys. Rev. D 1998, 58, 083510. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Lin, C.M.; Matsuda, T. Primordial black holes from the inflating curvaton. Phys. Rev. D 2013, 87, 103527. [Google Scholar] [CrossRef] [Green Version]
- Clesse, S.; García-Bellido, J. Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies. Phys. Rev. D 2015, 92, 023524. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.L.; Lee, W.; Ng, K.W. Production of high stellar-mass primordial black holes in trapped inflation. JHEP 2017, 02, 008. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Racco, D.; Riotto, A. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter. Phys. Rev. Lett. 2018, 120, 121301. [Google Scholar] [CrossRef] [Green Version]
- Kannike, K.; Marzola, L.; Raidal, M.; Veermäe, H. Single Field Double Inflation and Primordial Black Holes. JCAP 2017, 2017, 020. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bellido, J.; Ruiz Morales, E. Primordial black holes from single field models of inflation. Phys. Dark Univ. 2017, 18, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.L.; Lee, W.; Ng, K.W. Primordial black holes and associated gravitational waves in axion monodromy inflation. JCAP 2018, 2018, 001. [Google Scholar] [CrossRef] [Green Version]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. Double inflation as a single origin of primordial black holes for all dark matter and LIGO observations. Phys. Rev. D 2018, 97, 043514. [Google Scholar] [CrossRef] [Green Version]
- Palma, G.A.; Sypsas, S.; Zenteno, C. Seeding primordial black holes in multifield inflation. Phys. Rev. Lett. 2020, 125, 121301. [Google Scholar] [CrossRef]
- Fumagalli, J.; Renaux-Petel, S.; Ronayne, J.W.; Witkowski, L.T. Turning in the landscape: A new mechanism for generating Primordial Black Holes. arXiv 2020, arXiv:2004.08369. [Google Scholar]
- Atal, V.; Germani, C. The role of non-gaussianities in Primordial Black Hole formation. Phys. Dark Univ. 2019, 24, 100275. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Primordial Non-Gaussianities from Inflation Models. Adv. Astron. 2010, 2010, 638979. [Google Scholar] [CrossRef] [Green Version]
- Chluba, J.; Hamann, J.; Patil, S.P. Features and New Physical Scales in Primordial Observables: Theory and Observation. Int. J. Mod. Phys. D 2015, 24, 1530023. [Google Scholar] [CrossRef] [Green Version]
- Slosar, A.; Abazajian, K.N.; Abidi, M.; Adshead, P.; Ahmed, Z.; Alonso, D.; Amin, M.A.; Ansarinejad, B.; Armstrong, R.; Baccigalupi, C.; et al. Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations. arXiv 2019, arXiv:1903.09883. [Google Scholar]
- Starobinsky, A.A. Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential. JETP Lett. 1992, 55, 489–494. [Google Scholar]
- Adams, J.A.; Cresswell, B.; Easther, R. Inflationary perturbations from a potential with a step. Phys. Rev. D 2001, 64, 123514. [Google Scholar] [CrossRef]
- Bean, R.; Chen, X.; Hailu, G.; Tye, S.H.H.; Xu, J. Duality Cascade in Brane Inflation. JCAP 2008, 2008, 026. [Google Scholar] [CrossRef]
- Adshead, P.; Dvorkin, C.; Hu, W.; Lim, E.A. Non-Gaussianity from Step Features in the Inflationary Potential. Phys. Rev. D 2012, 85, 023531. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Cannone, D.; Matarrese, S. The Effective Field Theory of Inflation Models with Sharp Features. JCAP 2013, 2013, 038. [Google Scholar] [CrossRef] [Green Version]
- Palma, G.A. Untangling features in the primordial spectra. JCAP 2015, 2015, 035. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, G.; Beltran Jimenez, J.; Pieroni, M. Black hole formation from a general quadratic action for inflationary primordial fluctuations. JCAP 2019, 2019, 016. [Google Scholar] [CrossRef] [Green Version]
- Kefala, K.; Kodaxis, G.P.; Stamou, I.D.; Tetradis, N. Features of the inflaton potential and the power spectrum of cosmological perturbations. arXiv 2020, arXiv:2010.12483. [Google Scholar]
- Achucarro, A.; Gong, J.O.; Hardeman, S.; Palma, G.A.; Patil, S.P. Features of heavy physics in the CMB power spectrum. JCAP 2011, 2011, 030. [Google Scholar] [CrossRef]
- Shiu, G.; Xu, J. Effective Field Theory and Decoupling in Multi-field Inflation: An Illustrative Case Study. Phys. Rev. D 2011, 84, 103509. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Langlois, D.; Mizuno, S. Influence of heavy modes on perturbations in multiple field inflation. JCAP 2012, 2012, 040. [Google Scholar] [CrossRef]
- Pahud, C.; Kamionkowski, M.; Liddle, A.R. Oscillations in the inflaton potential? Phys. Rev. D 2009, 79, 083503. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Easther, R.; Lim, E.A. Generation and Characterization of Large Non-Gaussianities in Single Field Inflation. JCAP 2008, 2008, 010. [Google Scholar] [CrossRef]
- Silverstein, E.; Westphal, A. Monodromy in the CMB: Gravity Waves and String Inflation. Phys. Rev. D 2008, 78, 106003. [Google Scholar] [CrossRef] [Green Version]
- Flauger, R.; McAllister, L.; Pajer, E.; Westphal, A.; Xu, G. Oscillations in the CMB from Axion Monodromy Inflation. JCAP 2010, 2010, 009. [Google Scholar] [CrossRef]
- Chen, X.; Namjoo, M.H. Standard Clock in Primordial Density Perturbations and Cosmic Microwave Background. Phys. Lett. B 2014, 739, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Namjoo, M.H.; Wang, Y. Models of the Primordial Standard Clock. JCAP 2015, 2015, 027. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Gong, J.O. Towards general patterns of features in multi-field inflation. JHEP 2015, 08, 115. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.G.; Pi, S. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential. JCAP 2018, 2018, 001. [Google Scholar] [CrossRef] [Green Version]
- Domènech, G.; Rubio, J.; Wons, J. Mimicking features in alternatives to inflation with interacting spectator fields. Phys. Lett. B 2019, 790, 263–269. [Google Scholar] [CrossRef]
- Chen, X.; Loeb, A.; Xianyu, Z.Z. Unique Fingerprints of Alternatives to Inflation in the Primordial Power Spectrum. Phys. Rev. Lett. 2019, 122, 121301. [Google Scholar] [CrossRef] [Green Version]
- Young, S.; Byrnes, C.T. Primordial black holes in non-Gaussian regimes. JCAP 2013, 2013, 052. [Google Scholar] [CrossRef]
- Atal, V.; Garriga, J.; Marcos-Caballero, A. Primordial black hole formation with non-Gaussian curvature perturbations. JCAP 2019, 2019, 073. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Franciolini, G.; Kehagias, A.; Peloso, M.; Riotto, A.; Ünal, C. The Ineludible non-Gaussianity of the Primordial Black Hole Abundance. JCAP 2019, 2019, 048. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Nakatsuka, H. Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation. Phys. Rev. D 2019, 99, 123501. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Sasaki, M. Evolution of Isocurvature Perturbations. 1. Photon - Baryon Universe. Int. J. Mod. Phys. A 1986, 1, 265. [Google Scholar] [CrossRef]
- Kodama, H.; Sasaki, M. Evolution of Isocurvature Perturbations. 2. Radiation Dust Universe. Int. J. Mod. Phys. A 1987, 2, 491. [Google Scholar] [CrossRef]
- Hooper, D.; Krnjaic, G.; McDermott, S.D. Dark Radiation and Superheavy Dark Matter from Black Hole Domination. JHEP 2019, 2019, 001. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Kinney, W.H.; Stojkovic, D. Gravitational wave production by Hawking radiation from rotating primordial black holes. JCAP 2016, 2016, 034. [Google Scholar] [CrossRef] [Green Version]
- Arbey, A.; Auffinger, J.; Silk, J. Evolution of primordial black hole spin due to Hawking radiation. Mon. Not. R. Astron. Soc. 2020, 494, 1257–1262. [Google Scholar] [CrossRef]
- Kuhnel, F. Enhanced Detectability of Spinning Primordial Black Holes. Eur. Phys. J. C 2020, 80, 243. [Google Scholar] [CrossRef]
- Arbey, A.; Auffinger, J.; Sandick, P.; Shams Es Haghi, B.; Sinha, K. Precision Calculation of Dark Radiation from Spinning Primordial Black Holes and Early Matter Dominated Eras. arXiv 2021, arXiv:2104.04051. [Google Scholar]
- Masina, I. Dark matter and dark radiation from evaporating Kerr primordial black holes. arXiv 2021, arXiv:2103.13825. [Google Scholar]
- Husdal, L. On Effective Degrees of Freedom in the Early Universe. Galaxies 2016, 4, 78. [Google Scholar] [CrossRef]
- Saikawa, K.; Shirai, S. Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model. JCAP 2018, 2018, 035. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kohri, K.; Sugiyama, N. Cosmological constraints on late time entropy production. Phys. Rev. Lett. 1999, 82, 4168. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, M.; Kohri, K.; Sugiyama, N. MeV scale reheating temperature and thermalization of neutrino background. Phys. Rev. D 2000, 62, 023506. [Google Scholar] [CrossRef] [Green Version]
- Hannestad, S. What is the lowest possible reheating temperature? Phys. Rev. D 2004, 70, 043506. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Hiroshima, N.; Kohri, K.; Hansen, R.S.L.; Tram, T.; Hannestad, S. MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles. JCAP 2019, 2019, 012. [Google Scholar] [CrossRef] [Green Version]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Skillman, E. New BBN limits on physics beyond the standard model from 4He. Astropart. Phys. 2005, 23, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Fields, B.D.; Olive, K.A.; Yeh, T.H.; Young, C. Big-Bang Nucleosynthesis after Planck. JCAP 2020, 2020, 010, Erratum in JCAP 2020, 11, E02. [Google Scholar] [CrossRef] [Green Version]
- Sendra, I.; Smith, T.L. Improved limits on short-wavelength gravitational waves from the cosmic microwave background. Phys. Rev. D 2012, 85, 123002. [Google Scholar] [CrossRef] [Green Version]
- Pagano, L.; Salvati, L.; Melchiorri, A. New constraints on primordial gravitational waves from Planck 2015. Phys. Lett. B 2016, 760, 823–825. [Google Scholar] [CrossRef] [Green Version]
- Abazajian, K.N. et al. [CMB-S4 Collaboration] CMB-S4 Science Book, First Edition. arXiv 2016, arXiv:1610.02743. [Google Scholar]
- Watanabe, M.; Kanno, S.; Soda, J. The Nature of Primordial Fluctuations from Anisotropic Inflation. Prog. Theor. Phys. 2010, 123, 1041–1068. [Google Scholar] [CrossRef] [Green Version]
- Soda, J. Statistical Anisotropy from Anisotropic Inflation. Class. Quant. Grav. 2012, 29, 083001. [Google Scholar] [CrossRef]
- Naruko, A.; Pitrou, C.; Koyama, K.; Sasaki, M. Second-order Boltzmann equation: Gauge dependence and gauge invariance. Class. Quant. Grav. 2013, 30, 165008. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Naruko, A.; Hiramatsu, T.; Sasaki, M. Geodesic curve-of-sight formulae for the cosmic microwave background: A unified treatment of redshift, time delay, and lensing. JCAP 2014, 2014, 051. [Google Scholar] [CrossRef] [Green Version]
- Namikawa, T.; Naruko, A.; Saito, R.; Taruya, A.; Yamauchi, D. Unified approach to secondary effects on the CMB B-mode polarization. arXiv 2021, arXiv:2103.10639. [Google Scholar]
- Nakamura, T.; Sasaki, M.; Tanaka, T.; Thorne, K.S. Gravitational waves from coalescing black hole MACHO binaries. Astrophys. J. Lett. 1997, 487, L139–L142. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B. et al. [LIGO Scientific and Virgo Collaborations] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Mandic, V.; Bird, S.; Cholis, I. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers. Phys. Rev. Lett. 2016, 117, 201102. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, Y.F.; Huang, Q.G.; Li, T.G.F. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. Phys. Rev. Lett. 2018, 120, 191102. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101, Erratum in Phys. Rev. Lett. 2018, 121, 059901. [Google Scholar] [CrossRef] [Green Version]
- Bird, S.; Cholis, I.; Muñoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO detect dark matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef]
- Ali-Haïmoud, Y.; Kovetz, E.D.; Kamionkowski, M. Merger rate of primordial black-hole binaries. Phys. Rev. D 2017, 96, 123523. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Triantafyllou, N. Enhanced cosmological perturbations and the merger rate of PBH binaries. JCAP 2019, 2019, 043. [Google Scholar] [CrossRef] [Green Version]
- Peloso, M.; Sorbo, L.; Unal, C. Rolling axions during inflation: Perturbativity and signatures. JCAP 2016, 2016, 001. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.; Gow, A.D.; Byrnes, C.T. Bayesian analysis of LIGO-Virgo mergers: Primordial vs. astrophysical black hole populations. Phys. Rev. D 2020, 102, 123524. [Google Scholar] [CrossRef]
- De Luca, V.; Franciolini, G.; Pani, P.; Riotto, A. Bayesian Evidence for Both Astrophysical and Primordial Black Holes: Mapping the GWTC-2 Catalog to Third-Generation Detectors. JCAP 2021, 2021, 003. [Google Scholar] [CrossRef]
- Franciolini, G.; Baibhav, V.; De Luca, V.; Ng, K.K.Y.; Wong, K.W.K.; Berti, E.; Pani, P.; Riotto, A.; Vitale, S. Quantifying the evidence for primordial black holes in LIGO/Virgo gravitational-wave data. arXiv 2021, arXiv:2105.03349. [Google Scholar]
- Niikura, H.; Takada, M.; Yokoyama, S.; Sumi, T.; Masaki, S. Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events. Phys. Rev. D 2019, 99, 083503. [Google Scholar] [CrossRef] [Green Version]
- Mróz, P.; Udalski, A.; Skowron, J.; Poleski, R.; Kozłowski, S.; Szymański, M.K.; Soszyński, I.; Wyrzykowski, L.; Pietrukowicz, P.; Ulaczyk, K.; et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 2017, 548, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, S.; Takhistov, V.; Vitagliano, E.; Kusenko, A.; Sasaki, M.; Takada, M. Testing Stochastic Gravitational Wave Signals from Primordial Black Holes with Optical Telescopes. Phys. Lett. B 2021, 814, 136097. [Google Scholar] [CrossRef]
- Abbott, B. et al. [LIGO Scientific and Virgo Collaborations] Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run. Phys. Rev. D 2019, 100, 061101. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, S.J.; Pandey, K.L.; Suyama, T.; Kandhasamy, S.; Ajith, P. Search for the stochastic gravitational-wave background induced by primordial curvature perturbations in LIGO’s second observing run. arXiv 2020, arXiv:2009.05514. [Google Scholar]
- Romero-Rodriguez, A.; Martinez, M.; Pujolàs, O.; Sakellariadou, M.; Vaskonen, V. Search for a scalar induced stochastic gravitational wave background in the third LIGO-Virgo observing run. arXiv 2021, arXiv:2107.11660. [Google Scholar]
- Arzoumanian, Z. et al. [NANOGrav Collaboration] The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background. Astrophys. J. 2018, 859, 47. [Google Scholar] [CrossRef]
- Ellis, J.; Lewicki, M. Cosmic String Interpretation of NANOGrav Pulsar Timing Data. Phys. Rev. Lett. 2021, 126, 041304. [Google Scholar] [CrossRef]
- Blasi, S.; Brdar, V.; Schmitz, K. Has NANOGrav found first evidence for cosmic strings? Phys. Rev. Lett. 2021, 126, 041305. [Google Scholar] [CrossRef]
- Buchmuller, W.; Domcke, V.; Schmitz, K. From NANOGrav to LIGO with metastable cosmic strings. Phys. Lett. B 2020, 811, 135914. [Google Scholar] [CrossRef]
- Samanta, R.; Datta, S. Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis. JHEP 2021, 05, 211. [Google Scholar] [CrossRef]
- Nakai, Y.; Suzuki, M.; Takahashi, F.; Yamada, M. Gravitational Waves and Dark Radiation from Dark Phase Transition: Connecting NANOGrav Pulsar Timing Data and Hubble Tension. Phys. Lett. B 2021, 816, 136238. [Google Scholar] [CrossRef]
- Addazi, A.; Cai, Y.F.; Gan, Q.; Marciano, A.; Zeng, K. NANOGrav results and dark first order phase transitions. Sci. China Phys. Mech. Astron. 2021, 64, 290411. [Google Scholar] [CrossRef]
- Neronov, A.; Roper Pol, A.; Caprini, C.; Semikoz, D. NANOGrav signal from magnetohydrodynamic turbulence at the QCD phase transition in the early Universe. Phys. Rev. D 2021, 103, 041302. [Google Scholar] [CrossRef]
- Ratzinger, W.; Schwaller, P. Whispers from the dark side: Confronting light new physics with NANOGrav data. SciPost Phys. 2021, 10, 047. [Google Scholar] [CrossRef]
- Bian, L.; Cai, R.G.; Liu, J.; Yang, X.Y.; Zhou, R. Evidence for different gravitational-wave sources in the NANOGrav dataset. Phys. Rev. D 2021, 103, L081301. [Google Scholar] [CrossRef]
- Li, H.H.; Ye, G.; Piao, Y.S. Is the NANOGrav signal a hint of dS decay during inflation? Phys. Lett. B 2021, 816, 136211. [Google Scholar] [CrossRef]
- Liu, J.; Cai, R.G.; Guo, Z.K. Large Anisotropies of the Stochastic Gravitational Wave Background from Cosmic Domain Walls. Phys. Rev. Lett. 2021, 126, 141303. [Google Scholar] [CrossRef]
- Paul, A.; Mukhopadhyay, U.; Majumdar, D. Gravitational Wave Signatures from Domain Wall and Strong First-Order Phase Transitions in a Two Complex Scalar extension of the Standard Model. JHEP 2021, 05, 223. [Google Scholar] [CrossRef]
- Spokoiny, B. Deflationary universe scenario. Phys. Lett. B 1993, 315, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Vilenkin, A. Quintessential inflation. Phys. Rev. D 1999, 59, 063505. [Google Scholar] [CrossRef] [Green Version]
- Brax, P.; Martin, J. Coupling quintessence to inflation in supergravity. Phys. Rev. D 2005, 71, 063530. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Variable gravity: A suitable framework for quintessential inflation. Phys. Rev. D 2014, 90, 023512. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Papanikolaou, T.; Pinol, L.; Vennin, V. Metric preheating and radiative decay in single-field inflation. JCAP 2020, 2020, 003. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Steer, D.A. Counting the degrees of freedom of generalized Galileons. Phys. Rev. D 2015, 92, 084013. [Google Scholar] [CrossRef] [Green Version]
- NIST Digital Library of Mathematical Functions. Release 1.0.24 of 2019-09-15. Available online: http://dlmf.nist.gov/ (accessed on 2 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domenech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. https://doi.org/10.3390/universe7110398
Domenech G. Scalar Induced Gravitational Waves Review. Universe. 2021; 7(11):398. https://doi.org/10.3390/universe7110398
Chicago/Turabian StyleDomenech, Guillem. 2021. "Scalar Induced Gravitational Waves Review" Universe 7, no. 11: 398. https://doi.org/10.3390/universe7110398
APA StyleDomenech, G. (2021). Scalar Induced Gravitational Waves Review. Universe, 7(11), 398. https://doi.org/10.3390/universe7110398