Cosmological Model with Interconnection between Dark Energy and Matter
Abstract
:1. Introduction
2. Universe with Common Origin of DM and DE
2.1. A Universe with = 0
2.2. A Universe in the Presence of the Cosmological Constant
3. Hubble Tension
- , while in [23] it was found that
- using the tip of the red giant branch applied to SNIa, which is independent of the Cepheid distance scale. Analysis of a compilation of these and other recent high- and low-redshift measurements shows [24] that the discrepancy between Planck [16] and any three independent late-Universe measurements is between and . Different sophisticated explanations for the appearance of HT have been proposed [25,26,27,28,29,30] (see also [31,32,33,34]) and new experiments have been proposed for checking the reliability of this tension [35] (see also review [36]).
4. Removing the Hubble Tension
Numerical Estimations
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
1 | In most equations below it is taken that . |
References
- Gnedin, Y.N.; Krasnikov, S.V. Polarimetric effects associated with the detection of Goldstone bosons in stars and galaxies. Sov. Phys. JETP 1992, 75, 933–937. [Google Scholar]
- Gnedin, Y.N. Resonance magnetic conversion of photons into massless axions and striking feature in quasar polarized light. Astrophys. Space Sci. 1997, 249, 125–149. [Google Scholar] [CrossRef]
- Gnedin, Y.N. Astronomical searches for nonbarionic dark matter. Astrophys. Space Sci. 1997, 252, 95–106. [Google Scholar] [CrossRef]
- Gnedin, Y.N.; Dodonov, S.N.; Vlasyuk, V.V.; Spiridonova, O.I.; Shakhverdov, A.V. Astronomical searches for axions: Observations at the SAO 6-m telescope. Mon. Not. R. Astron. Soc. 1999, 306, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, Y.N.; Piotrovich, M.Y.; Natsvlishvili, T.M. PVLAS experiment: Some astrophysical consequences. Mon. Not. R. Astron. Soc. 2007, 374, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Piotrovich, M.Y.; Gnedin, Y.N.; Natsvlishvili, T.M. Coupling constant for axion and electromagnetic fields and cosmological observations. Astrophysics 2009, 52, 412–422. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Novikov, I.D. The Structure and Evolution of the Universe; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Riess, A.G. The Expansion of the Universe is Faster than Expected. Nat. Rev. Phys. 2019, 2, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astrophys. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe; Perseus Books: Reading, MA, USA, 1998. [Google Scholar]
- Linde, A.D. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 1982, 117, 175–178. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv 2020, arXiv:1807.06209v3. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Bucciarelli, B.; Lattanzi, M.G.; MacKenty, J.W.; Bowers, J.B.; Zheng, W.; Filippenko, A.V.; et al. Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant. Astrophys. J. 2018, 861, 126. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Yuan, W.; Riess, A.G.; Macri, L.M.; Casertano, S.; Scolnic, D.M. Consistent Calibration of the Tip of the Red Giant Branch in the Large Magellanic Cloud on the Hubble Space Telescope Photometric System and Implications for the Determination of the Hubble Constant. Astrophys. J. 2019, 886, 61. [Google Scholar] [CrossRef] [Green Version]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the Early and the Late Universe. arXiv 2019, arXiv:1907.10625. [Google Scholar] [CrossRef]
- Karwal, T.; Kamionkowski, M. Early dark energy, the Hubble-parameter tension, and the string axiverse. Phys. Rev. D 2016, 94, 103523. [Google Scholar] [CrossRef] [Green Version]
- Moertsell, E.; Dhawan, S. Does the Hubble constant tension call for new physics? arXiv 2018, arXiv:1801.07260. [Google Scholar] [CrossRef] [Green Version]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early Dark Energy Can Resolve The Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Pan, S.; Di Valentino, E.; Nunes, R.C.; Vagnozzi, S.; Mota, D.F. Tale of stable interacting dark energy, observational signatures, and the H0 tension. J. Cosmol. Astropart. Phys. 2018, 1809, 019. [Google Scholar] [CrossRef] [Green Version]
- Vagnozzi, S. New physics in light of the H0 tension: An alternative view. arXiv 2019, arXiv:1907.07569. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy after the latest Planck, DES, and H0 measurements: An excellent solution to the H0 and cosmic shear tensions. arXiv 2019, arXiv:1908.04281. [Google Scholar]
- Umiltà, C.; Ballardini, M.; Finelli, F.; Paoletti, D. CMB and BAO constraints for an induced gravity dark energy model with a quartic potential. J. Cosmol. Astropart. Phys. 2015, 1508, 017. [Google Scholar] [CrossRef]
- Ballardini, M.; Finelli, F.; Umiltà, C.; Paoletti, D. Cosmological constraints on induced gravity dark energy models. J. Cosmol. Astropart. Phys. 2016, 1605, 067. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Ballardini, M.; Braglia, M.; Finelli, F.; Paoletti, D.; Starobinsky, A.A.; Umilta, C. Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity. Phys. Rev. D 2019, 100, 103524. [Google Scholar] [CrossRef] [Green Version]
- Knox, L.; Millea, M. The Hubble Hunter’s Guide. Phys. Rev. D 2020, 101, 043533. [Google Scholar] [CrossRef] [Green Version]
- Bengaly, C.A.P.; Clarkson, C.; Maartens, R. The Hubble constant tension with next generation galaxy surveys. arXiv 2019, arXiv:1908.04619. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin—Part 1; 1917; pp. 142–152. [Google Scholar]
- Mukhanov, V.F.; Chibisov, G.V. Vacuum energy and large-scale structure of the Universe. Sov. Phys. JETP 1982, 56, 258–265. [Google Scholar]
- Arun, K.; Gudennavar, S.B.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166–186. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.H.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Samart, D.; Phongpichit, P. Unification of inflation and dark matter in the Higgs–Starobinsky model. Eur. Phys. J. C 2019, 79, 347. [Google Scholar] [CrossRef]
- Turner, M.S. Windows on the axion. Phys. Rep. 1990, 197, 67–97. [Google Scholar] [CrossRef]
- Age of the Universe. Available online: https://en.wikipedia.org/wiki/Age_of_the_universe (accessed on 28 October 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisnovatyi-Kogan, G.S. Cosmological Model with Interconnection between Dark Energy and Matter. Universe 2021, 7, 412. https://doi.org/10.3390/universe7110412
Bisnovatyi-Kogan GS. Cosmological Model with Interconnection between Dark Energy and Matter. Universe. 2021; 7(11):412. https://doi.org/10.3390/universe7110412
Chicago/Turabian StyleBisnovatyi-Kogan, Gennady S. 2021. "Cosmological Model with Interconnection between Dark Energy and Matter" Universe 7, no. 11: 412. https://doi.org/10.3390/universe7110412
APA StyleBisnovatyi-Kogan, G. S. (2021). Cosmological Model with Interconnection between Dark Energy and Matter. Universe, 7(11), 412. https://doi.org/10.3390/universe7110412