Magnetized Dusty Black Holes and Wormholes
Abstract
:1. Introduction
2. Tolman’s Solution with an Electric or Magnetic Field
3. Possible Wormhole Throats
4. Some Particular Models
4.1. A Special Wormhole Solution
4.2. Wormholes in a Dust-Filled Universe
4.3. A Wormhole-like Structure inside a Schwarzschild or Reissner–Nordström Black Hole
4.4. Photon Motion across the Dust Layer
5. Conclusions
- It has been shown that the q-Tolman dust clouds can contain wormhole throats under certain conditions on the arbitrary functions and of the general solution to the field equations.
- It has been shown that throats can only exist in the elliptic branch of q-Tolman space-times and are in general located in T-regions. This means that if a dust layer is matched to external Reissner–Nordström or Schwarzschild space-time regions, the whole configuration is a black hole rather than a wormhole.
- The q-Tolman space-times with throats are proven to exist for a finite period of time in their comoving reference frames. If (no electromagnetic field), the evolution takes place between two “spherical” singularities at which , while at the initial and final singularities are of shell-sticking nature ().
- An analysis of radial null geodesics for particular examples of models under study has shown that the dust layers with throats can be traversable in both cases and . In other words, a photon can cross such a dust layer more rapidly than this layer collapses.
- It has been shown that q-Tolman clouds with throats can form traversable wormholes in closed isotropic FRW cosmological models filled with dust—or, more precisely, connect two copies of such a model. Therefore, each of these universes, taken separately, preserves all its important physical features, including such an issue as a cosmological horizon. However, if the wormhole is large enough, one should also consider the view of “another universe” through this wormhole, which needs a separate study. Note also that these wormholes expand and contract together with the corresponding cosmological space-time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
1 |
References
- Flamm, L. Beitrage zur Einsteinschen Gravitationstheorie. Phys. Z. 1916, 17, 448. [Google Scholar]
- Einstein, A.; Rosen, N. The particle problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geometrodynamics; Academic Press: New York, NY, USA, 1962; 334p. [Google Scholar]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251. [Google Scholar]
- Ellis, H.G. Ether flow through a drainhole—A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [Google Scholar] [CrossRef]
- Ellis, H.G. The evolving, flowless drainhole: A nongravitating-particle model in general relativity theory. Gen. Relativ. Gravit. 1979, 10, 105–123. [Google Scholar] [CrossRef]
- Clément, G. A class of wormhole solutions to higher dimensional general relativity. Gen. Relativ. Gravit. 1984, 16, 131–138. [Google Scholar] [CrossRef]
- Clément, G. Axisymmetric regular multiwormhole solutions in five-dimensional general relativity. Gen. Relativ. Gravit. 1984, 16, 477–489. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics: Woodbury, NY, USA, 1995; 412p. [Google Scholar]
- Lobo, F.S.N. Exotic solutions in General Relativity: Traversable wormholes and ‘warp drive’ spacetimes. In Classical and Quantum Gravity Research; Nova Science Publishers: New York, NY, USA, 2008; pp. 1–78. [Google Scholar]
- Bronnikov, K.A. Spherically symmetric solutions in D-dimensional dilaton gravity. Gravit. Cosmol. 1995, 1, 67–78. [Google Scholar]
- Clément, G.; Fabris, J.C.; Rodrigues, M.E. Phantom black holes in Einstein–Maxwell-dilaton theory. Phys. Rev. D 2009, 79, 064021. [Google Scholar] [CrossRef] [Green Version]
- Goulart, P. Phantom wormholes in Einstein–Maxwell-dilaton theory. Class. Quantum Gravity 2017, 35, 025012. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yang, J. Charged Ellis wormhole and black bounce. Phys. Rev. D. 2019, 100, 124063. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, H. Trapping Horizons of the Evolving Charged Wormhole and Black Bounce. arXiv 2021, arXiv:2104.11134. [Google Scholar]
- Matos, T.; Miranda, G. Exact rotating magnetic traversable wormhole satisfying the energy conditions. Phys. Rev. D 2019, 99, 124045. [Google Scholar]
- Blázquez-Salcedo, J.L.; Knoll, C.; Radu, E. Traversable wormholes in Einstein–Dirac-Maxwell theory. Phys. Rev. Lett. 2021, 126, 101102. [Google Scholar] [CrossRef] [PubMed]
- Konoplya, R.A.; Zhidenko, A. Traversable wormholes in general relativity without exotic matter. arXiv 2021, arXiv:2106.05034. [Google Scholar]
- Bolokhov, S.V.; Bronnikov, K.A.; Krasnikov, S.V.; Skvortsova, M.V. A note on “Traversable wormholes in Einstein–Dirac-Maxwell theory”. arXiv 2021, arXiv:2104.10933. [Google Scholar]
- Alencar, G.; Nilton, M. Schwarzschild-like wormholes in asymptotically safe gravity. Universe 2021, 7, 332. [Google Scholar]
- Lobo, F.S.N. Chaplygin traversable wormholes. Phys. Rev. D 2006, 73, 064028. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Baleevskikh, K.A.; Skvortsova, M.V. Wormholes with fluid sources: A no-go theorem and new examples. Phys. Rev. D 2017, 96, 124039. [Google Scholar] [CrossRef] [Green Version]
- Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D 2005, 71, 043520. [Google Scholar] [CrossRef] [Green Version]
- Kuhfittig, P.K.F. Conformal-symmetry wormholes supported by a perfect fluid. New Horizons Math. Phys. 2017, 1, 14–18. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Stable phantom energy traversable wormhole models. AIP Conf. Proc. 2006, 861, 936–943. [Google Scholar]
- Kuhfittig, P.K.F. Exactly solvable wormhole and cosmological models with a barotropic equation of state. Acta Phys. Pol. B 2016, 47, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Moraes, P.H.R.S.; Sahoo, P.G.R. Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms. Int. J. Mod. Phys. D 2018, 27, 1950004. [Google Scholar] [CrossRef] [Green Version]
- Kuhfittig, P.K.F. Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints. Phys. Rev. D 2002, 66, 024015. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild spacetimes. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Kar, S. Evolving wormholes and the energy conditions. Phys. Rev. D 1994, 49, 862. [Google Scholar] [CrossRef]
- Kim, S.W. Cosmological model with a traversable wormhole. Phys. Rev. D 1996, 53, 6889. [Google Scholar] [CrossRef]
- Roman, T.A. Inflating Lorentzian wormholes. Phys. Rev. D 1993, 47, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Sushkov, S.V.; Kim, S.W. Cosmological evolution of a ghost scalar field. Gen. Relativ. Gravit. 2004, 36, 1671–1678. [Google Scholar] [CrossRef] [Green Version]
- Sushkov, S.V.; Zhang, Y.Z. Scalar wormholes in cosmological setting and their instability. Phys. Rev. D 2008, 77, 024042. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Letelier, P.S. Dynamic wormholes and energy conditions. Prog. Theor. Phys. 1995, 94, 137–142. [Google Scholar] [CrossRef]
- Hayward, S.A. Wormhole dynamics in spherical symmetry. Phys. Rev. D 2009, 79, 124001. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 1998, 58, 04402. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, D.; Visser, M. Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 1997, 56, 4745. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Starobinsky, A.A. No realistic wormholes from ghost-free scalar-tensor phantom dark energy. JETP Lett. 2007, 85, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A. Krechet, V.G. Potentially observable cylindrical wormholes without exotic matter in GR. Phys. Rev. D 2019, 99, 084051. [Google Scholar] [CrossRef] [Green Version]
- Bolokhov, S.V.; Bronnikov, K.A.; Skvortsova, M.V. Cylindrical wormholes: A search for viable phantom-free models in GR. Int. J. Mod. Phys. D 2019, 28, 1941008. [Google Scholar]
- Bronnikov, K.A.; Krechet, V.G.; Oshurko, V.B. Rotating Melvin-like universes and wormholes in general relativity. Symmetry 2020, 12, 1306. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes without exotic matter in Einstein–Cartan theory. Gravit. Cosmol. 2015, 21, 283–288. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Galiakhmetov, A.M. Wormholes and black universes without phantom fields in Einstein–Cartan theory. Phys. Rev. D 2016, 94, 124006. [Google Scholar] [CrossRef] [Green Version]
- Arellano, A.V.B.; Lobo, F.S.N. Evolving wormhole geometries within nonlinear electrodynamics. Class. Quantum Gravity 2006, 23, 5811–5824. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Nonlinear electrodynamics, regular black holes and wormholes. Int. J. Mod. Phys. D 2018, 27, 184105. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R. Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. USA 1934, 20, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, G. L’Univers en expansion. Ann. Soc. Sci. Brux. 1933, A53, 51–85. [Google Scholar]
- Bondi, H. Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 1947, 107, 410, Reprinted in Gen. Relativ. Gravit. 1999, 31, 1783–1805. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1987; Volume 2, 402p. [Google Scholar]
- Bambi, C. Black Holes: A Laboratory for Testing Strong Gravity; Springer Nature Singapore Pte Ltd.: Singapore, 2017; 355p. [Google Scholar]
- Christodoulou, D. Violation of cosmic censorship in the gravitational collapse of a dust cloud. Commun. Math. Phys. 1984, 93, 171–195. [Google Scholar] [CrossRef]
- Kashargin, P.; Sushkov, S. Collapsing wormholes sustained by dustlike matter. Universe 2020, 6, 186. [Google Scholar] [CrossRef]
- Markov, M.A.; Frolov, V.P. Metrics of the closed Friedman world perturbed by electric charge (to the theory of electromagnetic ‘Friedmons’). Teor. Mat. Fiz. 1970, 3, 3–17. [Google Scholar]
- Bailyn, M. Oscillatory behavior of charge-matter fluids with e/m > G1/2. Phys. Rev. D 1973, 8, 1036. [Google Scholar] [CrossRef]
- Vickers, P.A. Charged dust spheres in general relativity. Ann. Inst. Henri Poincaré A 1973, 18, 137. [Google Scholar]
- Ivanenko, D.D.; Krechet, V.G.; Lapchinskii, V.G. The dynamics of charged dust in the general theory of relativity. Sov. Phys. J. 1973, 16, 1675–1679. [Google Scholar] [CrossRef]
- Khlestkov, Y.A. Three types of solutions of the Einstein–Maxwell equations. J. Exp. Teor. Fis. 1975, 41, 188. [Google Scholar]
- Shikin, I.S. An investigation of a class of gravitational fields for a charged dustlike medium. J. Exp. Teor. Fis. 1975, 40, 215. [Google Scholar]
- Pavlov, N.V. Charged dust spheres in the general theory of relativity I. Quadratures of Einstein’s equations. Sov. Phys. J. 1976, 19, 489–495. [Google Scholar] [CrossRef]
- Pavlov, N.V.; Bronnikov, K.A. Charged dust spheres in the general theory of relativity II. Singularities and physically permissible models. Sov. Phys. J. 1976, 19, 916–920. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kovalchuk, M.A. Some exact models for nonspherical collapse, I. Gen. Rel. Grav. 1983, 15, 809–822. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kovalchuk, M.A. Some exact models for nonspherical collapse, II. Gen. Rel. Grav. 1983, 15, 823–836. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kovalchuk, M.A. Some exact models for nonspherical collapse, III. Gen. Rel. Grav. 1984, 16, 15–31. [Google Scholar] [CrossRef]
- Shatskiy, A.A.; Novikov, I.D.; Kardashev, N.S. A dynamic model of the wormhole and the Multiverse model. Uspekhi Fiz. Nauk 2008, 178, 481–488. [Google Scholar] [CrossRef]
- Khlestkov, Y.A.; Sukhanova, L.A. Internal structure of wormholes—Geometric images of charged particles in general relativity. Gravit. Cosmol. 2018, 24, 360–370. [Google Scholar] [CrossRef]
- Tomikawa, Y.; Izumi, K.; Shiromizu, T. New definition of a wormhole throat. Phys. Rev. D 2015, 91, 104008. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, E.; Klippert, R.; Santos, G. Dynamical wormhole definitions confronted. Class. Quantum Gravity 2018, 35, 155009. [Google Scholar] [CrossRef] [Green Version]
- Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der einsteinschen. Ann. Phys. 1916, 355, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Nordström, G. On the energy of the gravitational field in Einstein’s theory. Proc. Kon. Ned. Akad. Wet. 1918, 20, 1238–1245. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge UP: Cambridge, UK, 1973; 391p. [Google Scholar]
- Darmois, G. Les équations de la gravitation einsteinienne. In Mémorial des Sciences Mathematiques; Gauthier-Villars: Paris, France, 1927; Volume 25. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B 1967, 48, 463. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bronnikov, K.A.; Kashargin, P.E.; Sushkov, S.V. Magnetized Dusty Black Holes and Wormholes. Universe 2021, 7, 419. https://doi.org/10.3390/universe7110419
Bronnikov KA, Kashargin PE, Sushkov SV. Magnetized Dusty Black Holes and Wormholes. Universe. 2021; 7(11):419. https://doi.org/10.3390/universe7110419
Chicago/Turabian StyleBronnikov, Kirill A., Pavel E. Kashargin, and Sergey V. Sushkov. 2021. "Magnetized Dusty Black Holes and Wormholes" Universe 7, no. 11: 419. https://doi.org/10.3390/universe7110419
APA StyleBronnikov, K. A., Kashargin, P. E., & Sushkov, S. V. (2021). Magnetized Dusty Black Holes and Wormholes. Universe, 7(11), 419. https://doi.org/10.3390/universe7110419