f(T, B) Cosmography for High Redshifts
Abstract
:1. Introduction
2. Gravity on Basis
3. Extended Cosmography for Gravity
Standard Case
4. Observational Cosmographic Constraints
- Pantheon compilation. The recent SNeIa compilation known as the Pantheon sample (SN) [69] consists of 1048 SNeIa compressed in 40 redshift bins. As already analysed in the literature, SNeIa can provide estimates of the distance modulus, , the theoretically predicted value of which is related to the luminosity distance we obtain in Equations (46) and (48) as follows
- New GRB dataset. After the reconstruction/prior calibration of from SN, we can use them to calibrate the luminosity correlations of the GRB data set. The correlations obtained from this calibration can be expressed by considering a generic exponential form , where this assumption is derived by consider the X-ray light curves of GRBs constructed from the combination of Burst Alert Telescope and X-ray telescope data in the way described in [70] and fitted using one or two components from the optional afterglow via the parametrised Amati relation and the Ghirlanda relation [71], where this expression can be re-expressed in linear form as , with , and . Additionally, the six luminosity correlations measured are reported in [72].To calibrate these six expressions with a SNeIa sample (in particular, for Pantheon sample), we consider that GRBs radiate isotropically by computing their bolometric peak flux, where uncertainty on L propagates from the uncertainties on bolometric peak flux , and the luminosity distance of supernovae. With this new sample we calibrated the luminosity correlations by maximizing the likelihood [73]The best-fitting parameters and their uncertainties,, are reported in Tables 1 and 2 from [72].
- Cosmic Chronometers. We consider a sample of 31 model-independent measurements which use the differential age method proposed by [74].
- Case (a). Fixed . Using the expression in Equation (35) and the values and (which relates to a pure power law in the boundary term theory), we obtain and , using the full Pantheon + GRB + CC using a Markov chain Monte Carlo (MCMC) analysis. For this case we obtain a Universe that is in decelerating phase. This sets the first constraint on the form of , where the cannot be fixed if we need to follow the correct cosmic acceleration. See Figure 1 for the posterior plot. Notice that once we add GRB we obtain the confidence level (C.L) overlaps on the Pantheon solely.
- Case (b). Fixed . Using the expression for j (37) and the values and , we obtain , , and using the full sample Pantheon + GRB+ CC with an MCMC analysis. For this case we obtain a Universe that is in fact accelerating as expected. See Figure 2 for details of the posterior. Here, we notice that the values of the higher derivative cosmographic parameters start to become reasonable.
- Case (c). Fixed . Using the expression for s (37) and the values and , we obtain , , and using the full sample Pantheon + GRB+ CC. Notice that here the cosmography can go beyond . For this case we obtain a Universe that is in fact accelerating as expected and the addition of GRB explore the necessity of a high cosmography. See Figure 3.
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Derivations for the Power Law Model Cosmography
Appendix B. Phenomenological Considerations
References
- Dodelson, S. Modern Cosmology; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Binney, J. Galactic Dynamics/James Binney and Scott Tremaine, 2nd ed.; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Bernal, J.L.; Verde, L.; Riess, A.G. The trouble with H0. J. Cosmol. Astropart. Phys. 2016, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E. Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension. Astropart. Phys. 2021, 131, 102605. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battye, R.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, O.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E. Cosmology intertwined III: fσ8 and S8. Astropart. Phys. 2021, 131, 102604. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Appleby, S.; Linder, E.V. The Well-Tempered Cosmological Constant. J. Cosmol. Astropart. Phys. 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Gaitskell, R. Direct detection of dark matter. Ann. Rev. Nucl. Part. Sci. 2004, 54, 315–359. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L. Dark matter detection. J. Phys. G 2016, 43, 044001. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 2005, 405, 279–390. [Google Scholar] [CrossRef] [Green Version]
- Barboza, E.M., Jr.; Alcaniz, J.S. A parametric model for dark energy. Phys. Lett. B 2008, 666, 415–419. [Google Scholar] [CrossRef]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. D 2005, 72, 103503. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, G. Constraining the equation of state of the universe from distant type Ia supernovae and cosmic microwave background anisotropies. Mon. Not. R. Astron. Soc. 1999, 310, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astier, P. Can luminosity distance measurements probe the equation of state of dark energy. Phys. Lett. B 2001, 500, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Cooray, A.R.; Huterer, D. Gravitational lensing as a probe of quintessence. Astrophys. J. Lett. 1999, 513, L95–L98. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Nájera, A. Dynamical dark energy models in the light of Gravitational-Wave Transient Catalogues. arXiv 2021, arXiv:2103.02097. [Google Scholar]
- Colgáin, E.O.; Sheikh-Jabbari, M.M.; Yin, L. Can dark energy be dynamical? Phys. Rev. D 2021, 104, 023510. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Banerjee, A.; Colgáin, E.O. Cosmography and flat ΛCDM tensions at high redshift. Phys. Rev. D 2020, 102, 123532. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel Gravity: From Theory to Cosmology. arXiv 2021, arXiv:2106.13793. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [Green Version]
- Krssak, M.; van den Hoogen, R.; Pereira, J.; Böhmer, C.; Coley, A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Gonzalez, P.; Vasquez, Y. Teleparallel Equivalent of Lovelock Gravity. Phys. Rev. D 2015, 92, 124023. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.F.; Levi Said, J. Can Horndeski Theory be recast using Teleparallel Gravity? Phys. Rev. D 2019, 100, 064018. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. f(R) gravity: Successes and challenges. In Proceedings of the 18th SIGRAV Conference, Urbino, Italy, 9–15 September 2008. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. D 2011, 83, 023508. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Flathmann, K.; Pfeifer, C. Photon sphere and perihelion shift in weak f(T) gravity. Phys. Rev. D 2019, 100, 084064. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Levi Said, J. Cosmological viable models in f(T, B) gravity as solutions to the H0 tension. Class. Quant. Grav. 2020, 37, 165002. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Capozziello, S.; Capriolo, M.; Transirico, M. The gravitational energy-momentum pseudotensor: The cases of f(R) and f(T) gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850164. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Capozziello, S. Noether Symmetry Approach in f(T, B) teleparallel cosmology. Eur. Phys. J. C 2017, 77, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paliathanasis, A. de Sitter and Scaling solutions in a higher-order modified teleparallel theory. J. Cosmol. Astropart. Phys. 2017, 1708, 027. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Levi Said, J.; Gakis, V.; Saridakis, E.N. Gravitational Waves in Modified Teleparallel Theories. Phys. Rev. D 2018, 97, 124064. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Zubair, M.; Abbas, G. Thermodynamics and cosmological reconstruction in f(T, B) gravity. Phys. Dark Univ. 2018, 19, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Wright, M. Conformal transformations in modified teleparallel theories of gravity revisited. Phys. Rev. D 2016, 93, 103002. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Levi Said, J.; Finch, A. Gravitoelectromagnetism, Solar System Test and Weak-Field Solutions in f(T, B) Gravity with Observational Constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Capriolo, M.; Caso, L. Weak Field Limit and Gravitational Waves in f(T, B) Teleparallel Gravity. Eur. Phys. J. C 2020, 80, 156. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Levi Said, J.; Zubair, M. Solar System Tests in Modified Teleparallel Gravity. arXiv 2020, arXiv:2006.06750. [Google Scholar] [CrossRef]
- Hehl, F.W.; Von Der Heyde, P.; Kerlick, G.D.; Nester, J.M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Variational Principles in Teleparallel Gravity Theories. Universe 2021, 7, 114. [Google Scholar] [CrossRef]
- Weitzenböock, R. Invariantentheorie; Noordhoff: Gronningen, The Netherlands, 1923. [Google Scholar]
- Ortín, T. Gravity and Strings; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Zubair, M.; Durrani, L.R.; Waheed, S. Reconciling Tsallis holographic dark energy models in modified f(T, B) gravitational framework. Eur. Phys. J. Plus 2021, 136, 943. [Google Scholar] [CrossRef]
- Zubair, M.; Durrani, L.R. A study of the cosmologically reconstructed f(T, B) gravity from the cosmological jerk parameter. Eur. Phys. J. Plus 2020, 135, 668. [Google Scholar] [CrossRef]
- Zubair, M.; Waheed, S.; Atif Fayyaz, M.; Ahmad, I. Energy constraints and the phenomenon of cosmic evolution in the f(T, B) framework. Eur. Phys. J. Plus 2018, 133, 452. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Tamanini, N.; Boehmer, C.G. Good and bad tetrads in f(T) gravity. Phys. Rev. D 2012, 86, 044009. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f(T)-gravity. Phys. Rev. D 2011, 84, 043527. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef] [Green Version]
- Franco, G.A.R.; Escamilla-Rivera, C.; Levi Said, J. Stability analysis for cosmological models in f(T, B) gravity. Eur. Phys. J. C 2020, 80, 677. [Google Scholar] [CrossRef]
- Caruana, M.; Farrugia, G.; Levi Said, J. Cosmological bouncing solutions in f(T, B) gravity. Eur. Phys. J. C 2020, 80, 640. [Google Scholar] [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.J.; Said, J.L.; Pfeifer, C. Black Holes in f(T, B) Gravity: Exact and Perturbed Solutions. arXiv 2021, arXiv:2110.04087. [Google Scholar]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Qi, S.; Lu, T. A new luminosity relation for gamma-ray bursts and its implication. Astrophys. J. 2010, 717, 1274–1278. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, F.Y. Calibration of Gamma-Ray Burst Luminosity Correlations Using Gravitational Waves as Standard Sirens. Astrophys. J. 2019, 873, 39. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Rivera, C.; Carvajal, M.; Zamora, C.; Hendry, M. Neural networks and standard cosmography with newly calibrated high redshift GRB observations. arXiv 2021, arXiv:2109.00636. [Google Scholar]
- D’Agostini, G. Fits, and especially linear fits, with errors on both axes, extra variance of the data points and other complications. arXiv 2005, arXiv:physics/0511182. [Google Scholar]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Levi Said, J.; Mifsud, J. Performance of Non-Parametric Reconstruction Techniques in the Late-Time Universe. arXiv 2021, arXiv:2105.14332. [Google Scholar] [CrossRef]
- Bernardo, R.C.; Levi Said, J. Towards a model-independent reconstruction approach for late-time Hubble data. J. Cosmol. Astropart. Phys. 2021, 08, 027. [Google Scholar] [CrossRef]
- Briffa, R.; Capozziello, S.; Levi Said, J.; Mifsud, J.; Saridakis, E.N. Constraining teleparallel gravity through Gaussian processes. Class. Quant. Grav. 2020, 38, 055007. [Google Scholar] [CrossRef]
Cases | Pantheon SN + CC | Pantheon SN + CC + GRB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(a) | Fixed | - | - | Fixed | - | - | ||||
(b) | Fixed | - | Fixed | - | ||||||
(c) | Fixed | Fixed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escamilla-Rivera, C.; Rave-Franco, G.; Levi-Said, J. f(T, B) Cosmography for High Redshifts. Universe 2021, 7, 441. https://doi.org/10.3390/universe7110441
Escamilla-Rivera C, Rave-Franco G, Levi-Said J. f(T, B) Cosmography for High Redshifts. Universe. 2021; 7(11):441. https://doi.org/10.3390/universe7110441
Chicago/Turabian StyleEscamilla-Rivera, Celia, Geovanny Rave-Franco, and Jackson Levi-Said. 2021. "f(T, B) Cosmography for High Redshifts" Universe 7, no. 11: 441. https://doi.org/10.3390/universe7110441
APA StyleEscamilla-Rivera, C., Rave-Franco, G., & Levi-Said, J. (2021). f(T, B) Cosmography for High Redshifts. Universe, 7(11), 441. https://doi.org/10.3390/universe7110441