The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point
Abstract
:1. Introduction to Critical Points
2. Our Formalism
3. Results
- and (equivalent to and );
- and (equivalent to and );
- and ;
- and ;
- and ;
- and ;
- and ,
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms
CMF | Chiral Mean Field |
FAIR | Facility for Antiproton and Ion Research |
LIGO | Laser Interferometer Gravitational-Wave Observatory |
NICA | Nuclotron-based Ion Collider fAcility |
NICER | Neutron star Interior Composition Explorer |
NJL | Nambu–Jona-Lasinio |
NM | Normal matter |
PC | Pion condensation |
PNJL | Polyakov-loop-extended Nambu–Jona–Lasinio |
QCD | Quantum Chromodynamics |
QGP | Quark–gluon plasma |
RHIC | Relativistic Heavy Ion Collider |
References
- Arago, F.; Gay-Lussac, J. Annales de chimie et de physique; Chez Crochard: Prais, France, 1822. [Google Scholar]
- Mendeleev, D. Chastichnoe stseplenie nekotoruikh zhidkikh organicheskikh soedinienii. Khimicheskii Zhurnal N. Sokolova i A. Engel’garta 1860, 3, 81–97. [Google Scholar]
- Faraday, M. On the Liquefaction and Solidification of Bodies Generally Existing as Gases. Abstracts of the Papers Communicated to the Royal Society of London. JSTOR 1843, 5, 540–542. [Google Scholar]
- Andrews, T. XVIII. The Bakerian Lecture.—On the continuity of the gaseous and liquid states of matter. Philos. Trans. R. Soc. Lond. 1869, 159, 575–590. [Google Scholar]
- Van der Waals, J.D. Over de Continuiteit van den Gas-en Vloeistoftoestand; Sijthoff: Amsterdam, The Netherlands, 1873; Volume 1. [Google Scholar]
- Smoluchowski, M.v. Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen. Annalen Physik 1908, 330, 205–226. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Annalen Physik 1910, 338, 1275–1298. [Google Scholar] [CrossRef] [Green Version]
- Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 1998, 81, 4816–4819. [Google Scholar] [CrossRef] [Green Version]
- Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan. Phys. Rep. 2020, 853, 1–87. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Bluhm, M.; Du, L.; Dunne, G.V.; Elfner, H.; Gale, C.; Grefa, J.; Heinz, U.; Huang, A.; Karthein, J.M.; et al. The BEST framework for the search for the QCD critical point and the chiral magnetic effect. Nucl. Phys. A 2022, 1017, 122343. [Google Scholar] [CrossRef]
- Senger, P. The heavy-ion program of the future FAIR facility. J. Phys. Conf. Ser. 2017, 798, 012062. [Google Scholar] [CrossRef] [Green Version]
- Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G. Feasibility study of heavy-ion collision physics at NICA JINR. Nucl. Phys. A 2017, 967, 884–887. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef] [Green Version]
- Gavai, R.V.; Gupta, S. The Critical end point of QCD. Phys. Rev. D 2005, 71, 114014. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Giordano, M.; Günther, J.N.; Kapás, K.; Katz, S.D.; Pásztor, A.; Portillo, I.; Ratti, C.; Sexty, D.; Szabó, K.K. Trying to constrain the location of the QCD critical endpoint with lattice simulations. Nucl. Phys. A 2019, 982, 843–846. [Google Scholar] [CrossRef]
- Critelli, R.; Noronha, J.; Noronha-Hostler, J.; Portillo, I.; Ratti, C.; Rougemont, R. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics. Phys. Rev. D 2017, 96, 096026. [Google Scholar] [CrossRef] [Green Version]
- Halasz, A.M.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. On the phase diagram of QCD. Phys. Rev. D 1998, 58, 096007. [Google Scholar] [CrossRef]
- Stephanov, M.A. QCD phase diagram and the critical point. Prog. Theor. Phys. Suppl. 2004, 153, 139–156. [Google Scholar] [CrossRef]
- Ayala, A.; Zamora, B.A.; Cobos-Martínez, J.J.; Hernández-Ortiz, S.; Hernández, L.A.; Raya, A.; Tejeda-Yeomans, M.E. Collision energy dependence of the critical end point from baryon number fluctuations in the Linear Sigma Model with quarks. arXiv 2021, arXiv:2108.02362. [Google Scholar]
- Karsch, F. Lattice QCD at high temperature and density. Lect. Notes Phys. 2002, 583, 209–249. [Google Scholar] [CrossRef] [Green Version]
- Muroya, S.; Nakamura, A.; Nonaka, C.; Takaishi, T. Lattice QCD at finite density: An Introductory review. Prog. Theor. Phys. 2003, 110, 615–668. [Google Scholar] [CrossRef] [Green Version]
- Bedaque, P.F. A complex path around the sign problem. EPJ Web Conf. 2018, 175, 01020. [Google Scholar] [CrossRef] [Green Version]
- Li, B.A.; Ko, C.M.; Bauer, W. Isospin physics in heavy ion collisions at intermediate-energies. Int. J. Mod. Phys. E 1998, 7, 147–230. [Google Scholar] [CrossRef] [Green Version]
- Migdal, A.B.; Saperstein, E.E.; Troitsky, M.A.; Voskresensky, D.N. Pion degrees of freedom in nuclear matter. Phys. Rep. 1990, 192, 179–437. [Google Scholar] [CrossRef]
- Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P.J. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 2005, 411, 325–375. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G.; Fraga, E.S.; Hippert, M.; Schaffner-Bielich, J.; Schmalzbauer, S. New class of compact stars: Pion stars. Phys. Rev. D 2018, 98, 094510. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.J.; Stuke, M. Lepton asymmetry and the cosmic QCD transition. J. Cosmol. Astropart. Phys. 2009, 11, 025, Erratum in 2010, 10, E01. [Google Scholar] [CrossRef]
- Cotter, S.; Giudice, P.; Hands, S.; Skullerud, J.I. Towards the phase diagram of dense two-color matter. Phys. Rev. D 2013, 87, 034507. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Ilgenfritz, E.M.; Kotov, A.Y.; Molochkov, A.V.; Nikolaev, A.A. Study of the phase diagram of dense two-color QCD within lattice simulation. Phys. Rev. D 2016, 94, 114510. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Schafer, A. QCD quark condensate in external magnetic fields. Phys. Rev. D 2012, 86, 071502. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Krieg, S.; Schafer, A.; Szabo, K.K. The QCD phase diagram for external magnetic fields. J. High Energy Phys. 2012, 02, 044. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrodi, G.; Katz, S.D.; Schafer, A. The QCD equation of state in background magnetic fields. J. High Energy Phys. 2014, 08, 177. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Goy, V.A.; Ilgenfritz, E.M.; Kotov, A.Y.; Molochkov, A.V.; Muller-Preussker, M.; Petersson, B. Two-Color QCD with Non-zero Chiral Chemical Potential. J. High Energy Phys. 2015, 06, 094. [Google Scholar] [CrossRef] [Green Version]
- Braguta, V.V.; Ilgenfritz, E.M.; Kotov, A.Y.; Petersson, B.; Skinderev, S.A. Study of QCD Phase Diagram with Non-Zero Chiral Chemical Potential. Phys. Rev. D 2016, 93, 034509. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.B.; Sinclair, D.K. Lattice QCD at finite isospin density at zero and finite temperature. Phys. Rev. D 2002, 66, 034505. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.B.; Sinclair, D.K. Quenched lattice QCD at finite isospin density and related theories. Phys. Rev. D 2002, 66, 014508. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Stephanov, M.A. QCD at finite isospin density. Phys. Rev. Lett. 2001, 86, 592–595. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Stephanov, M.A. QCD at finite isospin density: From pion to quark—Anti-quark condensation. Phys. Atom. Nucl. 2001, 64, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Lepori, L.; Mannarelli, M. Multicomponent meson superfluids in chiral perturbation theory. Phys. Rev. D 2019, 99, 096011. [Google Scholar] [CrossRef] [Green Version]
- Carignano, S.; Lepori, L.; Mammarella, A.; Mannarelli, M.; Pagliaroli, G. Scrutinizing the pion condensed phase. Eur. Phys. J. 2017, A53, 35. [Google Scholar] [CrossRef] [Green Version]
- Janssen, O.; Kieburg, M.; Splittorff, K.; Verbaarschot, J.J.M.; Zafeiropoulos, S. Phase Diagram of Dynamical Twisted Mass Wilson Fermions at Finite Isospin Chemical Potential. Phys. Rev. D 2016, 93, 094502. [Google Scholar] [CrossRef] [Green Version]
- Cohen, T.D.; Sen, S. Deconfinement Transition at High Isospin Chemical Potential and Low Temperature. Nucl. Phys. A 2015, 942, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Fraga, E.S.; Palhares, L.F.; Villavicencio, C. Quark mass and isospin dependence of the deconfining critical temperature. Phys. Rev. D 2009, 79, 014021. [Google Scholar] [CrossRef] [Green Version]
- Loewe, M.; Villavicencio, C. Thermal pions at finite isospin chemical potential. Phys. Rev. D 2003, 67, 074034. [Google Scholar] [CrossRef] [Green Version]
- Loewe, M.; Villavicencio, C. Two-flavor condensates in chiral dynamics: Temperature and isospin density effects. Phys. Rev. D 2005, 71, 094001. [Google Scholar] [CrossRef] [Green Version]
- Splittorff, K.; Son, D.T.; Stephanov, M.A. QCD-like theories at finite baryon and isospin density. Phys. Rev. D 2001, 64, 016003. [Google Scholar] [CrossRef] [Green Version]
- Mannarelli, M. Meson condensation. Particles 2019, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N.; Zhukovsky, V.C. Inhomogeneous charged pion condensation in chiral asymmetric dense quark matter in the framework of NJL2 model. Phys. Rev. D 2017, 95, 105010. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Dualities in dense quark matter with isospin, chiral, and chiral isospin imbalance in the framework of the large-Nc limit of the NJL4 model. Phys. Rev. D 2018, 98, 054030. [Google Scholar] [CrossRef] [Green Version]
- Khunjua, T.G.; Klimenko, K.G.; Zhokhov, R.N. Chiral imbalanced hot and dense quark matter: NJL analysis at the physical point and comparison with lattice QCD. Eur. Phys. J. C 2019, 79, 151. [Google Scholar] [CrossRef]
- Xia, T.; He, L.; Zhuang, P. Three-flavor Nambu–Jona-Lasinio model at finite isospin chemical potential. Phys. Rev. D 2013, 88, 056013. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.F.; He, L.Y.; Liu, Y.X. Evaluating the phase diagram at finite isospin and baryon chemical potentials in the Nambu–Jona-Lasinio model. Phys. Rev. D 2010, 82, 056006. [Google Scholar] [CrossRef]
- Abuki, H.; Anglani, R.; Gatto, R.; Pellicoro, M.; Ruggieri, M. The Fate of pion condensation in quark matter: From the chiral to the real world. Phys. Rev. D 2009, 79, 034032. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.O.; Kyllingstad, L. Pion Condensation in a two-flavor NJL model: The role of charge neutrality. J. Phys. G 2009, 37, 015003. [Google Scholar] [CrossRef]
- Sun, G.f.; He, L.; Zhuang, P. BEC-BCS crossover in the Nambu-Jona-Lasinio model of QCD. Phys. Rev. D 2007, 75, 096004. [Google Scholar] [CrossRef] [Green Version]
- Ebert, D.; Klimenko, K.G. Pion condensation in electrically neutral cold matter with finite baryon density. Eur. Phys. J. C 2006, 46, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Ebert, D.; Klimenko, K.G. Gapless pion condensation in quark matter with finite baryon density. J. Phys. G 2006, 32, 599–608. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Jin, M.; Zhuang, P. Pion Condensation in Baryonic Matter: From Sarma Phase to Larkin-Ovchinnikov-Fudde-Ferrell Phase. Phys. Rev. D 2006, 74, 036005. [Google Scholar] [CrossRef] [Green Version]
- He, L.y.; Jin, M.; Zhuang, P.f. Pion superfluidity and meson properties at finite isospin density. Phys. Rev. D 2005, 71, 116001. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Zhuang, P. Phase structure of Nambu-Jona-Lasinio model at finite isospin density. Phys. Lett. B 2005, 615, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Barducci, A.; Casalbuoni, R.; Pettini, G.; Ravagli, L. A Calculation of the QCD phase diagram at finite temperature, and baryon and isospin chemical potentials. Phys. Rev. D 2004, 69, 096004. [Google Scholar] [CrossRef] [Green Version]
- Toublan, D.; Kogut, J.B. Isospin chemical potential and the QCD phase diagram at nonzero temperature and baryon chemical potential. Phys. Lett. B 2003, 564, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.; Buballa, M.; Oertel, M. Flavor mixing effects on the QCD phase diagram at nonvanishing isospin chemical potential: One or two phase transitions? Phys. Lett. B 2003, 562, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Mustafa, M.G.; Ray, R. Thermodynamics of the PNJL model with nonzero baryon and isospin chemical potentials. Phys. Rev. D 2007, 75, 094015. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Ghosh, S.K.; Lahiri, A.; Majumder, S.; Raha, S.; Ray, R. Isospin symmetry breaking and baryon-isospin correlations from Polyakov-Nambu-Jona-Lasinio model. Phys. Rev. C 2014, 89, 064905. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.O.; Haque, N.; Mustafa, M.G.; Strickland, M. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential. Phys. Rev. D 2016, 93, 054045. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Andersen, J.O.; Kneschke, P. Pion condensation and phase diagram in the Polyakov-loop quark-meson model. Phys. Rev. D 2018, 98, 074016. [Google Scholar] [CrossRef] [Green Version]
- Stiele, R.; Fraga, E.S.; Schaffner-Bielich, J. Thermodynamics of (2+1)-flavor strongly interacting matter at nonzero isospin. Phys. Lett. B 2014, 729, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H.; Nakano, T.Z.; Ohnishi, A.; Ruggieri, M.; Sumiyoshi, K. QCD phase diagram at finite baryon and isospin chemical potentials in Polyakov loop extended quark meson model with vector interaction. Phys. Rev. D 2013, 88, 074006. [Google Scholar] [CrossRef] [Green Version]
- Kamikado, K.; Strodthoff, N.; von Smekal, L.; Wambach, J. Fluctuations in the quark-meson model for QCD with isospin chemical potential. Phys. Lett. B 2013, 718, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD phase diagram for nonzero isospin-asymmetry. Phys. Rev. D 2018, 97, 054514. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD at finite isospin chemical potential. EPJ Web Conf. 2018, 175, 07020. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Endrodi, G. QCD phase diagram with isospin chemical potential. arXiv 2016, arXiv:1611.06758. [Google Scholar]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD at nonzero isospin asymmetry. arXiv 2018, arXiv:1811.06004. [Google Scholar]
- Adhikari, P.; Andersen, J.O. QCD at finite isospin density: Chiral perturbation theory confronts lattice data. Phys. Lett. B 2020, 804, 135352. [Google Scholar] [CrossRef]
- Adhikari, P.; Andersen, J.O. Pion and kaon condensation at zero temperature in three-flavor χPT at nonzero isospin and strange chemical potentials at next-to-leading order. J. High Energy Phys. 2020, 06, 170. [Google Scholar] [CrossRef]
- Adhikari, P.; Andersen, J.O.; Kneschke, P. Two-flavor chiral perturbation theory at nonzero isospin: Pion condensation at zero temperature. Eur. Phys. J. C 2019, 79, 874. [Google Scholar] [CrossRef]
- Avancini, S.S.; Bandyopadhyay, A.; Duarte, D.C.; Farias, R.L.S. Cold QCD at finite isospin density: Confronting effective models with recent lattice data. Phys. Rev. D 2019, 100, 116002. [Google Scholar] [CrossRef] [Green Version]
- Lopes, B.S.; Avancini, S.S.; Bandyopadhyay, A.; Duarte, D.C.; Farias, R.L.S. Hot QCD at finite isospin density: Confronting the SU(3) Nambu–Jona-Lasinio model with recent lattice data. Phys. Rev. D 2021, 103, 076023. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Xia, C.J.; Ruggieri, M. Thermodynamics and susceptibilities of isospin imbalanced QCD matter. Eur. Phys. J. C 2020, 80, 46. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.Q.; Ping, J.L.; Zong, H.S. QCD phase diagram at finite isospin and baryon chemical potentials with the self-consistent mean field approximation. Chin. Phys. C 2021, 45, 064102. [Google Scholar] [CrossRef]
- Carlomagno, J.P.; Dumm, D.G.; Scoccola, N.N. Isospin asymmetric matter in a nonlocal chiral quark model. arXiv 2021, arXiv:2107.02022. [Google Scholar] [CrossRef]
- Dexheimer, V.A.; Schramm, S. A Novel Approach to Model Hybrid Stars. Phys. Rev. C 2010, 81, 045201. [Google Scholar] [CrossRef]
- Papazoglou, P.; Zschiesche, D.; Schramm, S.; Schaffner-Bielich, J.; Stoecker, H.; Greiner, W. Nuclei in a chiral SU(3) model. Phys. Rev. C 1999, 59, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Roark, J.; Du, X.; Constantinou, C.; Dexheimer, V.; Steiner, A.W.; Stone, J.R. Hyperons and quarks in proto-neutron stars. Mon. Not. R. Astron. Soc. 2019, 486, 5441–5447. [Google Scholar] [CrossRef]
- Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 2021, 103, 025808. [Google Scholar] [CrossRef]
- Abbott, B.P. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Yunes, N. Binary Love Relations. Class. Quant. Grav. 2016, 33, 13LT01. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Yunes, N. Approximate Universal Relations among Tidal Parameters for Neutron Star Binaries. Class. Quant. Grav. 2017, 34, 015006. [Google Scholar] [CrossRef] [Green Version]
- Dexheimer, V.; de Oliveira Gomes, R.; Schramm, S.; Pais, H. What do we learn about vector interactions from GW170817? J. Phys. G 2019, 46, 034002. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Miller, M.C. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Roark, J.; Dexheimer, V. Deconfinement phase transition in proto-neutron-star matter. Phys. Rev. C 2018, 98, 055805. [Google Scholar] [CrossRef] [Green Version]
- Hempel, M.; Dexheimer, V.; Schramm, S.; Iosilevskiy, I. Noncongruence of the nuclear liquid–gas and deconfinement phase transitions. Phys. Rev. C 2013, 88, 014906. [Google Scholar] [CrossRef] [Green Version]
- Roessner, S.; Ratti, C.; Weise, W. Polyakov loop, diquarks and the two-flavour phase diagram. Phys. Rev. D 2007, 75, 034007. [Google Scholar] [CrossRef] [Green Version]
- Ratti, C.; Thaler, M.A.; Weise, W. Phases of QCD: Lattice thermodynamics and a field theoretical model. Phys. Rev. D 2006, 73, 014019. [Google Scholar] [CrossRef] [Green Version]
- Fodor, Z.; Katz, S.D. Critical point of QCD at finite T and mu, lattice results for physical quark masses. J. High Energy Phys. 2004, 04, 050. [Google Scholar] [CrossRef] [Green Version]
- Steinheimer, J.; Dexheimer, V.; Petersen, H.; Bleicher, M.; Schramm, S.; Stoecker, H. Hydrodynamics with a chiral hadronic equation of state including quark degrees of freedom. Phys. Rev. C 2010, 81, 044913. [Google Scholar] [CrossRef] [Green Version]
- Aryal, K.; Constantinou, C.; Farias, R.L.S.; Dexheimer, V. High-Energy Phase Diagrams with Charge and Isospin Axes under Heavy-Ion Collision and Stellar Conditions. Phys. Rev. D 2020, 102, 076016. [Google Scholar] [CrossRef]
- Hempel, M.; Pagliara, G.; Schaffner-Bielich, J. Conditions for phase equilibrium in supernovae, protoneutron, and neutron stars. Phys. Rev. D 2009, 80, 125014. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Jens Papenfort, L.; Dexheimer, V.; Hanauske, M.; Stoecker, H.; Rezzolla, L. On the deconfinement phase transition in neutron-star mergers. Eur. Phys. J. A 2020, 56, 59. [Google Scholar] [CrossRef]
- Alford, M.G.; Haber, A.; Harris, S.P.; Zhang, Z. Beta equilibrium under neutron star merger conditions. Universe 2021, 7, 399. [Google Scholar] [CrossRef]
- Dexheimer, V.; Aryal, K.; Wolf, M.; Constantinou, C.; Farias, R.L.S. Deconfinement Phase Transition under Chemical Equilibrium. Astron. Nachr. 2021, 342, 347–351. [Google Scholar] [CrossRef]
- Liu, L.M.; Zhou, W.H.; Xu, J.; Peng, G.X. Isospin effect on quark matter instabilities. Phys. Lett. B 2021, 822, 136694. [Google Scholar] [CrossRef]
- Most, E.R.; Papenfort, L.J.; Dexheimer, V.; Hanauske, M.; Schramm, S.; Stöcker, H.; Rezzolla, L. Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers. Phys. Rev. Lett. 2019, 122, 061101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cases | ||||||
---|---|---|---|---|---|---|
, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, K.; Constantinou, C.; Farias, R.L.S.; Dexheimer, V. The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point. Universe 2021, 7, 454. https://doi.org/10.3390/universe7110454
Aryal K, Constantinou C, Farias RLS, Dexheimer V. The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point. Universe. 2021; 7(11):454. https://doi.org/10.3390/universe7110454
Chicago/Turabian StyleAryal, Krishna, Constantinos Constantinou, Ricardo L. S. Farias, and Veronica Dexheimer. 2021. "The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point" Universe 7, no. 11: 454. https://doi.org/10.3390/universe7110454
APA StyleAryal, K., Constantinou, C., Farias, R. L. S., & Dexheimer, V. (2021). The Effect of Charge, Isospin, and Strangeness in the QCD Phase Diagram Critical End Point. Universe, 7(11), 454. https://doi.org/10.3390/universe7110454