NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments
Abstract
:1. Introduction
- solar neutrinos produced in nuclear reactions that make the Sun shine. Results included in the present determination of the flavour evolution of solar neutrinos comprise the total event rates in radiochemical experiments Chlorine [7], Gallex/GNO [8], and SAGE [9], and the time- and energy-dependent rates in the four phases of Super-Kamiokande [10,11,12,13], the three phases of SNO [14], and Borexino [15,16,17].
- neutrinos produced in accelerators and detected at distance , in the so-called long baseline (LBL) experiments, and in which neutrino oscillations have been observed in two channels:
- produced in nuclear reactors. Their disappearance was observed in their measured energy spectrum at two distinctive baselines.
2. New Minimal Standard Model with Three Massive Neutrinos
- in one minimal extension, right-handed neutrinos are introduced, and that the total lepton number is still conserved is imposed. In this form, gauge invariance allows for a Yukawa interaction involving . and the lepton doublet, in analogy to the charged fermions, after electroweak spontaneous symmetry breaking the NMSM Lagrangian, reads:In this case, the neutrino mass eigenstates are Dirac fermions, and neutrino and antineutrinos are distinct fields, i.e., ( here represents the charge conjugate neutrino field). This NMSM is gauge-invariant under the SM gauge group.
- In another minimal extension, a mass term is constructed employing only the SM left-handed neutrinos by allowing for the violation of the total lepton number. In this case, the NMSM Lagrangian isIn this NMSM, mass eigenstates are Majorana fermions, . The Majorana mass term above breaks electroweak gauge invariance.
- so , referred to as Normal Ordering (NO);
- so referred to as Inverted Ordering (IO).
3. NuFIT Results: The Three-Neutrino Paradigm
3.1. Reactor Neutrino Flux Uncertainties
3.2. Status of in Solar Experiments versus KamLAND
- Super-Kamiokande observed a day–night asymmetry that was larger than expected for the value preferred by KamLAND for which Earth matter effects are very small.
3.3. Inclusion of Super-Kamiokande Atmospheric Neutrino Data
3.4. , and Mass Ordering from LBL Accelerator and MBL Reactor Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pontecorvo, B. Neutrino experiments and the question of leptonic-charge conservation. Sov. Phys. JETP 1968, 26, 984–988. [Google Scholar]
- Gribov, V.N.; Pontecorvo, B. Neutrino astronomy and lepton charge. Phys. Lett. 1969, B28, 493. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.C.; Maltoni, M. Phenomenology with Massive Neutrinos. Phys. Rept. 2008, 460, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, L.; et al. Atmospheric Neutrino Oscillation Analysis with External Constraints in Super-Kamiokande I–IV. Phys. Rev. 2018, D97, 072001. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. 2015, D91, 072004. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration IceCube Oscillations: 3 Years Muon Neutrino Disappearance Data. Available online: http://icecube.wisc.edu/science/data/nu_osc (accessed on 25 October 2021).
- Homestake Collaboration. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. 2010, B685, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Sage Collaboration Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. 2009, C80, 015807. [CrossRef]
- Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Namba, T.; et al. Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. 2006, D73, 112001. [Google Scholar] [CrossRef] [Green Version]
- Cravens, J.P.; Abe, K.; Iida, T.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; et al. Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. 2008, D78, 032002. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Solar neutrino results in Super-Kamiokande-III. Phys. Rev. 2011, D83, 052010. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, Y. SuperKamiokande. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Aharmim, B.; Ahmed, S.N.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; et al. Combined Analysis of All Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory. Phys. Rev. 2013, C88, 025501. [Google Scholar] [CrossRef]
- Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Avanzini, M.B.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; et al. Precision measurement of the 7Be solar neutrino interaction rate in Borexino. Phys. Rev. Lett. 2011, 107, 141302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, G.; Benziger, J.; Bonetti, S.; Avanzini, M.B.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; et al. Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. 2010, D82, 033006. [Google Scholar] [CrossRef] [Green Version]
- Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; et al. Neutrinos from the primary proton–proton fusion process in the Sun. Nature 2014, 512, 383–386. [Google Scholar] [CrossRef]
- Adamson, P.; Anghel, I.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Bogert, D.; Cao, S.V.; Castromonte, C.M.; et al. Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS. Phys. Rev. Lett. 2013, 110, 251801. [Google Scholar] [CrossRef]
- Dunne, P. Latest Neutrino Oscillation Results from T2K. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Himmel, A. New Oscillation Results from the NOvA Experiment. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Adamson, P.; Anghel, I.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Bogert, D.; Cao, S.V.; Cherdack, D.; et al. Electron neutrino and antineutrino appearance in the full MINOS data sample. Phys. Rev. Lett. 2013, 110, 171801. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, T. New Results from the Double Chooz Experiment. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Adey, D.; An, F.P.; Balantekin, A.B.; Band, H.R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.F.; Cao, J.; Chan, Y.L.; et al. Measurement of Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 2018, 121, 241805. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J. RENO. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar] [CrossRef]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; et al. Reactor On-Off Antineutrino Measurement with Kamland. Phys. Rev. 2013, D88, 033001. [Google Scholar] [CrossRef] [Green Version]
- de Salas, P.; Forero, D.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.; Tortola, M.; Valle, J. 2020 Global Reassessment of the Neutrino Oscillation Picture. J. High Energy Phys. 2020, 2021, 1–36. [Google Scholar] [CrossRef]
- De Salas, P.; Gariazzo, S.; Mena, O.; Ternes, C.; Tortola, M. Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects. Front. Astron. Space Sci. 2018, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Unfinished fabric of the three neutrino paradigm. Phys. Rev. D 2021, 104, 083031. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Addendum To: Global Constraints on Absolute Neutrino Masses and Their Ordering. Phys. Rev. D 2020, 101, 116013. [Google Scholar] [CrossRef]
- NuFit Webpage. Available online: http://www.nu-fit.org (accessed on 25 October 2021).
- Gonzalez-Garcia, M.; Maltoni, M.; Salvado, J.; Schwetz, T. Global fit to three neutrino mixing: Critical look at present precision. J. High Energy Phys. 2012, 1212, 123. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T. Updated Fit to Three Neutrino Mixing: Status of Leptonic CP Violation. J. High Energy Phys. 2014, 11, 052. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T. Bayesian global analysis of neutrino oscillation data. J. High Energy Phys. 2015, 09, 200. [Google Scholar] [CrossRef] [Green Version]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Martínez-Soler, I.; Schwetz, T. Updated Fit to Three Neutrino Mixing: Exploring the Accelerator-Reactor Complementarity. J. High Energy Phys. 2017, 1, 87. [Google Scholar] [CrossRef] [Green Version]
- Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. J. High Energy Phys. 2019, 1, 106. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 9, 178. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. 1978, D17, 2369–2374. [Google Scholar] [CrossRef]
- Mikheev, S.P.; Smirnov, A.Y. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Huber, P. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. 2011, C84, 024617. [Google Scholar]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Aberle, C.; Akiri, T.; Dos Anjos, J.C.; Ardellier, F.; Barbosa, A.F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; Declais, Y.; De Kerret, H.; Dieterle, B.; Etenko, A.; George, J.; et al. Limits on Neutrino Oscillations from the CHOOZ Experiment. Phys. Lett. 1999, B466, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Piepke, A. Final results from the Palo Verde neutrino oscillation experiment. Prog. Part. Nucl. Phys. 2002, 48, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.A.; Lhuillier, D.; Fallot, M.; Letourneau, A.; Cormon, S.; Fechner, M.; Giot, L.; Lasserre, T.; Martino, J.; Mention, G.; et al. Improved Predictions of Reactor Antineutrino Spectra. Phys. Rev. 2011, C83, 054615. [Google Scholar] [CrossRef] [Green Version]
- Mention, G.; Fechner, M.; Lasserre, T.; Mueller, T.A.; Lhuillier, D.; Cribier, M.; Letourneau, A. The Reactor Antineutrino Anomaly. Phys. Rev. 2011, D83, 073006. [Google Scholar] [CrossRef] [Green Version]
- Declais, Y.; De Kerret, H.; Lefievre, B.; Obolensky, M.; Etenko, A.; Kozlov, Y.; Machulin, I.; Martemianov, V.; Mikaelyan, L.; Skorokhvatov, M.; et al. Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant. Phys. Lett. 1994, B338, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Kuvshinnikov, A.; Mikaelyan, L.; Nikolaev, S.; Skorokhvatov, M.; Etenko, A. Measuring the ν¯e+p→n+e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. JETP Lett. 1991, 54, 253–257. (In Russian) [Google Scholar]
- Achkar, B.; Aleksan, R.; Avenier, M.; Bagieu, G.; Bouchez, J.; Brissot, R.; Cavaignac, J.F.; Collot, J.; Cousinou, M.C.; Cussonneau, J.P.; et al. Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey. Nucl. Phys. 1995, B434, 503–534. [Google Scholar] [CrossRef]
- Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kozlov, Y.V.; Martemyanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K. Detection of anti-neutrinos in the flux from two reactors. Sov. Phys. JETP 1987, 66, 243–247. [Google Scholar]
- Vidyakin, G.S.; Vyrodov, V.N.; Kozlov, Y.V.; Martem’yanov, A.V.; Martem’yanov, V.P.; Odinokov, A.N.; Sukhotin, S.V.; Tarasenkov, V.G.; Turbin, E.V.; Tyurenkov, S.G.; et al. Limitations on the characteristics of neutrino oscillations. JETP Lett. 1994, 59, 390–393. [Google Scholar]
- Kwon, H.; Boehm, F.; Hahn, A.A.; Henrikson, H.E.; Vuilleumier, J.L.; Cavaignac, J.F.; Koang, D.H.; Vignon, B.; Feilitzsch, F.V.; Mössbauer, R.L. Search for neutrino oscillations at a fission reactor. Phys. Rev. 1981, D24, 1097–1111. [Google Scholar] [CrossRef] [Green Version]
- Zacek, G.; Feilitzsch, F.V.; Mössbauer, R.L.; Oberauer, L.; Zacek, A.V.; Boehm, F.; Fisher, P.H.; Gimlett, J.L.; Hahn, A.A.; Henrikson, H.E.; et al. Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor. Phys. Rev. 1986, D34, 2621–2636. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, Z.D.; Kropp, W.R.; Mandelkern, M.A.; Nakamura, S.; Pasierb-Love, E.L.; Price, L.R.; Reines, F.; Riley, S.P.; Sobel, H.W.; Baumann, N.; et al. Results of a two position reactor neutrino oscillation experiment. Phys. Rev. 1996, D53, 6054–6064. [Google Scholar] [CrossRef]
- Afonin, A.I.; Ketov, S.N.; Kopeikin, V.I.; Mikaelyan, L.A.; Skorokhvatov, M.D.; Tolokonnikov, S.V. A study of the reaction ν¯e+p→e++n on a nuclear reactor. Sov. Phys. JETP 1988, 67, 213–221. [Google Scholar]
- Schwetz, T.; Tortola, M.; Valle, J. Global neutrino data and recent reactor fluxes: Status of three-flavour oscillation parameters. New J. Phys. 2011, 13, 063004. [Google Scholar] [CrossRef]
- An, F.P.; Balantekin, A.B.; Band, H.R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.F.; Cao, J.; Cen, W.R.; Chan, Y.L.; et al. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Chin. Phys. 2017, C41, 013002. [Google Scholar] [CrossRef]
- Vinyoles, N.; Serenelli, A.M.; Villante, F.L.; Basu, S.; Bergström, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Peña-Garay, C.; Song, N. A new Generation of Standard Solar Models. Astrophys. J. 2017, 835, 202. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, J.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pena-Garay, C.; Serenelli, A.M.; Song, N. Updated determination of the solar neutrino fluxes from solar neutrino data. J. High Energy Phys. 2016, 3, 132. [Google Scholar] [CrossRef] [Green Version]
- Atmospheric Neutrino Oscillation Analysis with External Constraints in Super-Kamiokande I–IV. Available online: http://www-sk.icrr.u-tokyo.ac.jp/sk/publications/result-e.html#atmosci2018 (accessed on 25 October 2021).
- SK Atmospheric Oscillation Analysis 2020 (Preliminary) Results. Available online: https://indico-sk.icrr.u-tokyo.ac.jp/event/5517 (accessed on 25 October 2021).
- Ahn, M.H.; Aliu, E.; Andringa, S.; Aoki, S.; Aoyama, Y.; Argyriades, J.; Asakura, K.; Ashie, R.; Berghaus, F.; Berns, H.G.; et al. Measurement of Neutrino Oscillation by the K2K Experiment. Phys. Rev. 2006, D74, 072003. [Google Scholar] [CrossRef] [Green Version]
- Nichol, R. Results from MINOS. In Proceedings of the XXV International Conference on Neutrino Physics, Kyoto, Japan, 3–9 June 2012. [Google Scholar]
- Sakashita, K. Results from T2K. In Proceedings of the 36th International Conference on High Energy Physics, Melbourne, Australia, 4–11 July 2012. [Google Scholar]
- Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J.B.; Andreopoulos, C.; Andrieu, B.; Anerella, M.D.; Aoki, S.; Araoka, O.; et al. First Muon-Neutrino Disappearance Study with an Off-Axis Beam. Phys. Rev. 2012, D85, 031103. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, T. Results from T2K. In Proceedings of the XXV International Conference on Neutrino Physics, Kyoto, Japan, 3–9 June 2012. [Google Scholar]
- Dwyer, D. Improved measurement of electron-antineutrino disappearance at Daya Bay. In Proceedings of the XXV International Conference on Neutrino Physics, Kyoto, Japan, 3–9 June 2012. [Google Scholar]
- Abe, Y.; Aberle, C.; Akiri, T.; Dos Anjos, J.C.; Ardellier, F.; Barbosa, A.F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Reactor Electron Antineutrino Disappearance in the Double Chooz Experiment. 2012. Available online: http://xxx.lanl.gov/abs/1207.6632 (accessed on 25 October 2021).
- Ishitsuka, M. Double Chooz Results. In Proceedings of the XXV International Conference on Neutrino Physics, Kyoto, Japan, 3–9 June 2012. [Google Scholar]
- Okamura, N. Effect of the Smaller Mass-Squared Difference for the Long Base-Line Neutrino Experiments. Prog. Theor. Phys. 2006, 114, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R. Another Possible Way to Determine the Neutrino Mass Hierarchy. Phys. Rev. 2005, D72, 013009. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R. Determining Neutrino Mass Hierarchy by Precision Measurements in Electron and Muon Neutrino Disappearance Experiments. Phys. Rev. 2006, D74, 053008. [Google Scholar] [CrossRef] [Green Version]
- Elevant, J.; Schwetz, T. On the determination of the leptonic CP phase. J. High Energy Phys. 2015, 9, 16. [Google Scholar] [CrossRef] [Green Version]
Experiment | Dominant | Important |
---|---|---|
Solar Experiments | , | |
Reactor LBL (KamLAND) | , | |
Reactor MBL (Daya Bay, RENO, Double Chooz) | , | — |
Atmospheric Experiments (SK, IC-DC) | — | , , , |
Accel. LBL disapp. (K2K, MINOS, T2K, NOvA) | , | — |
Accel. LBL appearance (MINOS, T2K, NOvA) | , |
without SK atmospheric data | Normal Ordering (Best Fit) | Inverted Ordering () | |||
bfp | Range | bfp | Range | ||
with SK atmospheric data | Normal Ordering (Best Fit) | Inverted Ordering () | |||
bfp | Range | bfp | Range | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T. NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe 2021, 7, 459. https://doi.org/10.3390/universe7120459
Gonzalez-Garcia MC, Maltoni M, Schwetz T. NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe. 2021; 7(12):459. https://doi.org/10.3390/universe7120459
Chicago/Turabian StyleGonzalez-Garcia, Maria Concepcion, Michele Maltoni, and Thomas Schwetz. 2021. "NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments" Universe 7, no. 12: 459. https://doi.org/10.3390/universe7120459
APA StyleGonzalez-Garcia, M. C., Maltoni, M., & Schwetz, T. (2021). NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe, 7(12), 459. https://doi.org/10.3390/universe7120459