QCD Effective Locality: A Theoretical and Phenomenological Review
Abstract
:1. Introduction
2. Effective Locality in Short
2.1. The 4–Point Fermionic Green’s Function
2.2. Effective Locality at Eikonal and Quenched Approximation. The Gluon Bundle
2.3. Effective Locality as General, Still Formal a Statement
3. Theoretical Aspects of Effective Locality
3.1. Fradkin’s Representation Independence
3.2. An Odd Term:
3.3. Integration Measures
3.4. Effective Locality and Meijer Special Functions
3.5. Colour Algebraic Structure of Fermionic Green’s Functions
3.6. Calculations: Non–Perturbative and Gauge Invariant
3.7. An Effective Perturbative Expansion for the Strong Coupling Regime
3.8. and Dynamical Chiral Symmetry Breaking
4. Phenomenological Applications
4.1. Quark–Quark Binding Potential
4.2. Estimation of the Light Quark Mass
4.3. Nucleon–Nucleon Binding Potential
4.4. Estimation of the Size of the Deuteron
4.5. Application to Elastic Scattering
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | |
2 | This is because the Lagrangian is written out of the short distance dynamical degrees of freedom. |
3 | When passing from an infinite dimensional functional space to a finite dimensional one (where Random Matrix Theory is used), this theorem can be viewed as generalizing the more customary notion of a Jacobian. |
4 | Including forms which would correspond to any choice of non linear gauge fixing conditions. |
5 | That is, inverting a previously non invertible quadratic form on the fields. |
6 | The details of this quantization are given in [1]. |
7 | A strict eikonal approximation would devoid chirality of any meaning. |
8 | Contrary to the massive case in effect, in one cannot rely on the property of cluster decomposition [37], taking the limits of and separated by an infinite spatial distance. |
9 | We thank the unknown Referee who has drawn our attention to this important issue |
References
- Fried, H.M.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M. Gauge-invariant summation of All QCD virtual gluon exchanges. Eur. Phys. J. C 2010, 65, 395. [Google Scholar] [CrossRef]
- Fried, H.M.; Grandou, T.; Sheu, Y.-M. A new approach to analytic, non-perturbative and gauge-invariant QCD. Ann. Phys. 2012, 327, 2666. [Google Scholar] [CrossRef] [Green Version]
- Fried, H.M.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M. Analytic, non-perturbative, gauge-invariant quantum chromodynamics: Nucleon scattering and binding potentials. Ann. Phys. 2013, 338, 107. [Google Scholar] [CrossRef] [Green Version]
- Fried, H.M.; Grandou, T.; Sheu, Y.-M. Non-perturbative QCD amplitudes in quenched and eikonal approximations. Ann. Phys. 2014, 344, 78. [Google Scholar] [CrossRef]
- Fried, H.M.; Tsang, P.H.; Gabellini, Y.; Grandou, T.; Sheu, Y.-M. An exact, finite, gauge-invariant, non-perturbative approach to QCD renormalization. Ann. Phys. 2015, 359, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, H.; Langfeld, K.; von Smekal, L. Instantons in field strength formulated Yang-Mills theories. Phys. Lett. B 1993, 300, 111. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, H. Dual description of QCD. arXiv 1996, arXiv:hep-th/9608191v1. [Google Scholar]
- Seiberg, N.; Witten, E. Monopole Condensation, And Confinement In N=2 Supersymmetric Yang-Mills Theory. Nucl. Phys. B 1994, 426, 19. [Google Scholar] [CrossRef] [Green Version]
- Fried, H.M. Green’s Functions and Ordered Exponentials; Cambridge University Presss: Cambridge, MA, USA, 2002. [Google Scholar]
- Itzykson, C.; Zuber, J.B. Quantum Field Theory; McGraw-Hill Inc.: New York, NY, USA, 1980; Chapter 4. [Google Scholar]
- Halpern, M.B. Field-strength formulation of quantum chromodynamics. Phys. Rev. D 1977, 16, 1798. [Google Scholar] [CrossRef]
- Halpern, M.B. Gauge-invariant formulation of the self-dual sector. Phys. Rev. D 1977, 16, 3515. [Google Scholar] [CrossRef] [Green Version]
- Zee, A. Quantum Field Theory in a Nutshell, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2010; Chapter I.3. [Google Scholar]
- Grandou, T. On the Casimir operator dependences of QCD amplitudes. EPL 2014, 107, 11001. [Google Scholar] [CrossRef]
- Fried, H.M.; Grandou, T.; Hofmann, R. Casimir operator dependences of non-perturbative fermionic QCD amplitudes. Int. J. Mod. Phys. A 2016, 31, 1650120. [Google Scholar] [CrossRef]
- Streater, R.F.; Wightman, A.S. PCT, Spin and Statistics, and All That; Princeton University Press: Princeton, NJ, USA, 2000; ISBN 0691070628. [Google Scholar]
- Gabellini, Y.; Grandou, T. The effective locality property in pure Minkowskian Yang Mills theory. Work in Completion.
- Fried, H.M. Basics of Functional Methods and Eikonal Models; Editions Frontières: Paris, France, 1990. [Google Scholar]
- Fried, H.M.; Grandou, T.; Hofmann, R. On the non-perturbative realization of QCD gauge-invariance. Mod. Phys. Lett. A 2017, 32, 1730030. [Google Scholar] [CrossRef]
- Lavelle, M. Construction and Consequences of Coloured Charges in QCD. In Proceedings of the Workshop on Quantum Chromodynamics: Collisions, Confinement and Chaos, Paris, France, 3–8 June 1996; Muller, B., Fried, H.M., Eds.; American University of Paris: Paris, France, 1996. [Google Scholar]
- Brodsky, S.J.; Ellis, J.R.; Karliner, M. Chiral symmetry and the spin of the proton. Phys. Lett. B 1988, 206, 309. [Google Scholar] [CrossRef] [Green Version]
- de Téramond, G.F.; Brodsky, S.J. Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD. arXiv 2021, arXiv:2103.10950. [Google Scholar]
- Matveev, V.A.; Savrin, V.I.; Sissakian, A.N.; Tavkhelidze, A.N. Relativistic Quark Models in the Quasipotential Approach. Theor. Math. Phys. 2002, 132, 1119. [Google Scholar] [CrossRef]
- Johnson, G.W.; Lapidus, M.L. The Feynman Integral and Feynman’s Operational Calculus; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 4th ed.; Academic Press: London, UK, 1980. [Google Scholar]
- Apelblat, A. Table of Definite and Infinite Integrals; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1983; p. 26. [Google Scholar]
- Ferrante, D.D.; Guralnik, G.S.; Guralnik, Z.; Pehlevan, C. Complex Path Integrals and the Space of Theories. arXiv 2013, arXiv:1301.4233v2. [Google Scholar]
- Dmitrasinovic, V. Cubic Casimir operator of SUC(3) and confinement in the nonrelativistic quark model. Phys. Lett. B 2001, 499, 135. [Google Scholar] [CrossRef] [Green Version]
- Nayak, G.C.; van Nieuwenhuizen, P. Soft-gluon production due to a gluon loop in a constant chromoelectric background field. Phys. Rev. D 2005, 71, 125001. [Google Scholar] [CrossRef] [Green Version]
- Nayak, G.C. Nonperturbative quark-antiquark production from a constant chromoelectric field via the Schwinger mechanism. Phys. Rev. D 2005, 72, 125010. [Google Scholar] [CrossRef] [Green Version]
- Grandou, T.; Hofmann, R. On the absence of the Gribov copy problem in ‘effective locality’ QCD calculations. Mod. Phys. Lett. 2020, A35, 2050230. [Google Scholar] [CrossRef]
- Kleinert, H. Particles and Quantum Fields; World Scientific: Singapore, 2016; p. 602. [Google Scholar]
- Gabellini, Y.; Grandou, T. An effective perturbation theory for QCD at strong coupling, in preparation.
- van Baalen, G.; Kreimer, D.; Uminsky, D.; Yeats, K. The QCD β-function from global solutions to Dyson–Schwinger equations. Ann. Phys. 2010, 325, 300. [Google Scholar] [CrossRef] [Green Version]
- Cf. In Proceedings of the XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki, Greece, 28 August–4 September 2016; Available online: https://indico.cern.ch/event/353906/ (accessed on 2 December 2021).
- Dyakonov, D.I.; Petrov, V.Y. Chiral condensate in the instanton vacuum. Phys. Lett. B 1984, 147, 351. [Google Scholar] [CrossRef]
- Grandou, T.; Tsang, P.H. Effective locality and chiral symmetry breaking in QCD. Mod. Phys. Lett. A 2019, 34, 1950335. [Google Scholar] [CrossRef] [Green Version]
- Guerin, F.; Fried, H.M. Quenched massive Schwinger model in the infrared approximation. Phys. Rev. D 1986, 33, 3039. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.L. Random Matrices; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Tanabashi, M.; et al. [Particle Data Group] Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Fried, H.M. Modern Functional Quantum Field Theory—Summing Feynman Graphs; World Scientific: Singapore, 2014. [Google Scholar]
- Fried, H.M.; Tsang, P.H.; Gabellini, Y.; Grandou, T.; Sheu, Y.M. Comparison of QCD curves with elastic pp scattering data. Int. J. Mod. Phys. A 2019, 34, 1950236. [Google Scholar] [CrossRef] [Green Version]
- CERN-Napoli-Pisa-Stony Brook Collaboration; Ambrosio, M.; Anzivino, G.; Barbarino, G.; Carboni, G.; Cavasinni, V.; Del Prete, T.; Grannis, P.D.; Lloyd Owen, D.; Valdata-Nappi, M.; et al. Measurement of elastic scattering in antiproton-proton collisions at 52.8 GeV centre-of-mass energy. Phys. Lett. B 1982, 115, 495. [Google Scholar] [CrossRef] [Green Version]
- Breakstone, A.; Campanini, R.; Crawley, H.B.; Dallavalle, G.M.; Deninno, M.M.; Doroba, K.; Geist, W.; Drijard, D.; Fabbri, F.; Wunsch, M.; et al. A measurement of pp and pp elastic scattering at ISR energies. Nucl. Phys. B 1984, 248, 253. [Google Scholar] [CrossRef] [Green Version]
- Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J.-P.; Zucchelli, S.; et al. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings. Nucl. Phys. B 1985, 262, 689. [Google Scholar] [CrossRef] [Green Version]
- Amaldi, U.; Schubert, K. Impact parameter interpretation of proton-proton scattering from a critical review of all ISR data. Nucl. Phys. B 1980, 166, 301. [Google Scholar] [CrossRef] [Green Version]
- The TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brücken, E. Proton-proton elastic scattering at the LHC energy of s=7TeV. Europhys. Lett. 2011, 95, 41001. [Google Scholar] [CrossRef]
- The TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M. Measurement of proton-proton elastic scattering and total cross-section at s=7TeV. Europhys. Lett. 2013, 101, 21002. [Google Scholar] [CrossRef] [Green Version]
- The TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M. Luminosity-independent measurements of total, elastic and inelastic cross-sections at s=7TeV. Europhys. Lett. 2013, 101, 21004. [Google Scholar] [CrossRef] [Green Version]
- The TOTEM Collaboration; Nemes, F. The TOTEM experiment at the LHC and its physics results. Nucl. Phys. B 2013, 245, 275. [Google Scholar] [CrossRef]
- Kohara, A.K.; Ferreira, E.; Kodama, T. pp elastic scattering at LHC energies. Eur. Phys. J. C 2014, 74, 3175. [Google Scholar] [CrossRef] [Green Version]
- Antchev, G.; et al. [TOTEM collaboration] Measurement of elastic pp scattering at s=8TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section. Eur. Phys. J. C 2016, 76, 661. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fried, H.M.; Gabellini, Y.; Grandou, T.; Tsang, P.H. QCD Effective Locality: A Theoretical and Phenomenological Review. Universe 2021, 7, 481. https://doi.org/10.3390/universe7120481
Fried HM, Gabellini Y, Grandou T, Tsang PH. QCD Effective Locality: A Theoretical and Phenomenological Review. Universe. 2021; 7(12):481. https://doi.org/10.3390/universe7120481
Chicago/Turabian StyleFried, Herbert M., Yves Gabellini, Thierry Grandou, and Peter H. Tsang. 2021. "QCD Effective Locality: A Theoretical and Phenomenological Review" Universe 7, no. 12: 481. https://doi.org/10.3390/universe7120481
APA StyleFried, H. M., Gabellini, Y., Grandou, T., & Tsang, P. H. (2021). QCD Effective Locality: A Theoretical and Phenomenological Review. Universe, 7(12), 481. https://doi.org/10.3390/universe7120481