Singularities in Inflationary Cosmological Models
Abstract
:1. Introduction
- Type −1. “Grand bang/rip”. Ref. [18] The scale factor becomes null or diverges for .
- Type 0. “Big bang”. The scale factor becomes null for .
- Type I. “Big rip” [20]. The scale factor diverges for .
- Type III. “Big freeze” [40] or “finite scale factor singularities”. The derivatives of the scale factor diverge from first derivative on.
- Type IV. “Generalised sudden singularities [41]. The derivatives of the scale factor diverge from a derivative higher than second onward.
- Type ∞. “Directional singularities” [45,46]. These happen at an infinite value of the coordinate time, but they can be reached in finite proper time by only some observers. In [1] they are dubbed p.p. curvature singularities (curvature singularities along a parallelly transported basis) in a more general framework.
- If , where k is a natural number, the derivatives of the Hubble scalar diverge from the th onward.
2. Divergences in the Hubble Parameter and the Scale Factor
- : We require positive and . We have finite and and we have type II () or IV ) singularities at .
- : The exponent and are positive. The scale factor is finite and vanishes. Depending on the value of we have singularities at of type II () or of type IV () with a vanishing Hubble factor. If and every is natural, we would have a type V singularity.
3. Reconstruction of the Scalar Field Potential
- Non-natural : , with . This means a leading power in the negative potential and vanishing . For we have a type II singularity. Otherwise we have a type IV singularity.
- : This is the case of a finite ,
- : , and behaves as a power with . For such models is finite, but not . That is, a type II singularity, but with a negative potential.
- Non-natural : , and the potential behaves as a positive constant plus a term , with exponent in the interval . vanishes and diverges for , .
- : Type IV singularities with finite may arise in this case:Again, several possibilities arise:
- -
- :For , the leading non-constant term in is the one with exponent . The potential behaves as a constant plus a term , with . The singularity appears for .For or , , the leading non-constant term in is the linear one. The potential behaves as a constant plus a linear term in . The singularity would appear for .We may produce scalar field potentials with a higher leading power, besides the constant term, by requiring some cancellations between terms. We reproduce here the cases of quadratic, cubic and quartic powers:For , ,
- -
- , , :For , the potential behaves as a constant plus a term , with . The singularity appears for if and for if .For , the potential behaves as a constant plus a cubic term in .For , , ,For , , :
- -
- :For , the potential goes as with and the singularity appears for .For , the potential is linear in . And the same happens for , . is regular now.For , ,For , , , ,
4. Conclusions
- and vanishing : is singular for , .
- : Type II singularity.
- and vanishing : Type IV singularity.
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Davis, T.M.; Mörtsell, E.; Sollerman, J.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Filippenko, A.V.; Foley, R.J.; Garnavich, P.M.; et al. Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys. J. 2007, 666, 716. [Google Scholar] [CrossRef]
- Wood-Vasey, W.M.; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; et al. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. Astrophys. J. 2007, 666, 694. [Google Scholar] [CrossRef]
- Leibundgut, B. Cosmology with Supernovae. In Reviews of Modern Astronomy; Schielicke, R.E., Ed.; Wiley-VCH: Weinheim, Germany, 2004; Volume 17. [Google Scholar]
- Spergel, D.N.; Verde, L.; Peiris1, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Dark Energy: Mystery of the Millennium. AIP Conference Proceedings 2006, 861, 179. [Google Scholar]
- Sahni, V.; Starobinsky, A. Reconstructing dark energy. Int. J. Mod. Phys. D 2006, 15, 2105. [Google Scholar] [CrossRef]
- Maartens, R. Dark Energy and Dark Gravity. J. Phys. Conf. Ser. 2007, 68, 012046. [Google Scholar] [CrossRef] [Green Version]
- Durrer, R.; Maartens, R. Dark energy and dark gravity: Theory overview. Gen. Rel. Grav. 2008, 40, 301. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Jambrina, L.; Lazkoz, R. Singular fate of the universe in modified theories of gravity. Phys. Lett. B 2009, 670, 254. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef] [Green Version]
- Da̧browski, M.P.D.; Marosek, K. Regularizing cosmological singularities by varying physical constants. JCAP 2013, 2, 12. [Google Scholar] [CrossRef]
- Yurov, A.V. Brane-like singularities with no brane. Phys. Lett. B 2010, 689, 1. [Google Scholar] [CrossRef] [Green Version]
- Da̧browski, M.P.; Marosek, K.; Balcerzak, A. Standard and exotic singularities regularized by varying constants. Mem. Della Soc. Astron. 2014, 85, 44. [Google Scholar]
- Fernández-Jambrina, L. Grand rip and grand bang/crunch cosmological singularities. Phys. Rev. D 2014, 90, 064014. [Google Scholar] [CrossRef] [Green Version]
- Lazkoz, R.; Fernández-Jambrina, L. Singularities in inflationary cosmological models. arXiv 2021, arXiv:2112.03647. [Google Scholar]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom Energy and Cosmic Doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [CrossRef]
- Barrow, J.D. Sudden future singularities. Class. Quant. Grav. 2004, 21, L79. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Quantum escape of sudden future singularity. Phys. Lett. B 2004, 595, 1. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. More general sudden singularities. Class. Quant. Grav. 2004, 21, 5619. [Google Scholar] [CrossRef]
- Lake, K. Sudden future singularities in FLRW cosmologies. Class. Quant. Grav. 2004, 21, L129. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Final state and thermodynamics of a dark energy universe. Phys. Rev. D 2004, 70, 103522. [Google Scholar] [CrossRef] [Green Version]
- Da̧browski, M.P. Inhomogenized sudden future singularities. Phys. Rev. D 2005, 71, 103505. [Google Scholar] [CrossRef] [Green Version]
- Chimento, L.P.; Lazkoz, R. On big rip singularities. Mod. Phys. Lett. A 2004, 19, 2479. [Google Scholar] [CrossRef] [Green Version]
- Da̧browski, M.P. Statefinders, higher-order energy conditions and sudden future singularities. Phys. Lett. B 2005, 625, 184. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Batista, A.B.; Fabris, J.C.; Houndjo, S. Quantum particle production at sudden singularities. Phys. Rev. D 2008, 78, 123508. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Lip, S.Z.W. Classical stability of sudden and big rip singularities. Phys. Rev. D 2009, 80, 043518. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Future evolution and finite-time singularities in F(R) gravity unifying inflation and cosmic acceleration. Phys. Rev. D 2008, 78, 046006. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Cotsakis, S.; Tsokaros, A. A general sudden cosmological singularity. Class. Quant. Grav. 2010, 27, 165017. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Curvature invariants, geodesics, and the strength of singularities in Bianchi-I loop quantum cosmology. Phys. Rev. D 2012, 85, 104011. [Google Scholar] [CrossRef] [Green Version]
- Denkiewicz, T.; Da̧browski, M.P.; Ghodsi, H.; Hendry, M.A. Cosmological tests of sudden future singularities. Phys. Rev. D 2012, 85, 083527. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Galloway, G.J.; Tipler, F.J. The closed-universe recollapse conjecture. MNRAS 1986, 223, 835. [Google Scholar] [CrossRef]
- Fernández-Jambrina, L.; Lazkoz, R. Geodesic behaviour of sudden future singularities. Phys. Rev. D 2004, 70, 121503. [Google Scholar] [CrossRef] [Green Version]
- Shtanov, Y.; Sahni, V. New cosmological singularities in braneworld models. Class. Quant. Grav. 2002, 19, L101. [Google Scholar] [CrossRef] [Green Version]
- Gorini, V.; Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. Tachyons, scalar fields, and cosmology. Phys. Rev. D 2004, 69, 123512. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Deffayet, C.; Kamenshchik, A.Y. CFT driven cosmology and the DGP/CFT correspondence. JCAP 2010, 5, 34. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Gonzalez-Díaz, P.F.; Martín-Moruno, P. Worse than a big rip? Phys. Lett. B 2008, 659, 1. [Google Scholar] [CrossRef]
- Barrow, J.D.; Tsagas, C.G. New Isotropic and Anisotropic Sudden Singularities. Class. Quant. Grav. 2005, 22, 1563. [Google Scholar] [CrossRef] [Green Version]
- Da̧browski, M.P.; Denkiewicz, T. Barotropic index w-singularities in cosmology. Phys. Rev. D 2009, 79, 063521. [Google Scholar] [CrossRef]
- Shtanov, Y.; Sahni, V. Did the universe loiter at high redshifts? Phys. Rev. D 2005, 71, 084018. [Google Scholar]
- Fernández-Jambrina, L. W-cosmological singularities. Phys. Rev. D 2010, 82, 124004. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Jambrina, L. Hidden past of dark energy cosmological models. Phys. Lett. B 2007, 656, 9. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Jambrina, L. Initial directional singularity in inflationary models. Phys. Rev. D 2016, 94, 024049. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G.F.R.; Schmidt, B.G. Singular space-times. Gen. Rel. Grav. 1977, 8, 915. [Google Scholar] [CrossRef]
- Tipler, F.J. Singularities in conformally flat spacetimes. Phys. Lett. A 1977, 64, 8. [Google Scholar] [CrossRef]
- Królak, A. Towards the proof of the cosmic censorship hypothesis. Class. Quant. Grav. 1986, 3, 267. [Google Scholar] [CrossRef]
- Rudnicki, W.; Budzynski, R.J.; Kondracki, W. Generalized strong curvature singularities and weak cosmic censorship in cosmological space-times. Mod. Phys. Lett. A 2006, 21, 1501. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Jambrina, L.; Lazkoz, R. Classification of cosmological milestones. Phys. Rev. D 2006, 74, 064030. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Graham, A.A.H. Singular Inflation. Phys. Rev. D 2015, 91, 083513. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Graham, A.A.H. New Singularities in Unexpected Places. Int. J. Mod. Phys. D 2015, 24, 1544012. [Google Scholar] [CrossRef] [Green Version]
- Harigaya, K.; Ibe, M.; Schmitz, K.; Yanagida, T.T. Chaotic inflation with a fractional power-law potential in strongly coupled gauge theories. Phys. Lett. B 2013, 720, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Harigaya, K.; Ibe, M.; Schmitz, K.; Yanagida, T.T. Dynamical fractional chaotic inflation. Phys. Rev. D 2014, 90, 123524. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G.F.R.; Schmidt, B. Classification of singular space-times. Gen. Rel. Grav. 1979, 10, 989–997. [Google Scholar] [CrossRef]
- Visser, M. Cosmography: Cosmology without the Einstein equations. Gen. Relativ. Gravit. 2005, 37, 1541–1548. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cattoën, C.; Visser, M. Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities, and extremality events. Class. Quant. Grav. 2005, 22, 4913. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Saich, P. The behaviour of intermediate inflationary universes. Phys. Lett. B 1990, 249, 406–410. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S.; Trachilis, D. The generic sudden singularity in Brans-Dicke theory. Eur. Phys. J. C 2020, 80, 1197. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Jambrina, L. Singularities in Inflationary Cosmological Models. Universe 2021, 7, 491. https://doi.org/10.3390/universe7120491
Fernández-Jambrina L. Singularities in Inflationary Cosmological Models. Universe. 2021; 7(12):491. https://doi.org/10.3390/universe7120491
Chicago/Turabian StyleFernández-Jambrina, Leonardo. 2021. "Singularities in Inflationary Cosmological Models" Universe 7, no. 12: 491. https://doi.org/10.3390/universe7120491
APA StyleFernández-Jambrina, L. (2021). Singularities in Inflationary Cosmological Models. Universe, 7(12), 491. https://doi.org/10.3390/universe7120491