Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics
Abstract
:1. Introduction
2. The Nature of the Quark Hadron Interface: Sharp or Mixed?
3. The Speed of Phase Conversions at the Quark-Hadron Interface and Its Role in Stellar Stability
3.1. Extended Dynamical Stability
3.2. Interface Conversions: Slow or Rapid?
4. Astrophysical Scenarios for the Formation of Slow Stable Hybrid Stars
5. Implications for Gravitational Wave Astrophysics
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; Van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 6131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2019, 4, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Linares, M.; Shahbaz, T.; Casares, J. Peering into the dark side: Magnesium lines establish a massive neutron star in PSR J2215+5135. Astrophys. J. 2018, 859, 54. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. APJ Lett. 2021, Submitted. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-wave constraints on the neutron-star-matter Equation of State. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef] [Green Version]
- Raithel, C.; Özel, F.; Psaltis, D. Tidal deformability from GW170817 as a direct probe of the neutron star radius. Astrophys. J. Lett. 2018, 857, L23. [Google Scholar] [CrossRef]
- Capano, C.D.; Tews, I.; Brown, S.M.; Margalit, B.; De, S.; Kumar, S.; Brown, D.A.; Krishnan, B.; Reddy, S. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 2020, 4, 625–632. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [Green Version]
- Rezzolla, L.; Most, E.R.; Weih, L.R. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. Astrophys. J. 2018, 852, L25. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Han, M.Z.; Tang, S.P.; Hu, Y.M.; Li, Y.J.; Jiang, J.L.; Jin, Z.P.; Fan, Y.Z.; Wei, D.M. Is GW190425 consistent with being a neutron star-black hole merger? Astrophys. J. Lett. 2020, 891, L5. [Google Scholar] [CrossRef]
- Kyutoku, K.; Fujibayashi, S.; Hayashi, K.; Kawaguchi, K.; Kiuchi, K.; Shibata, M.; Tanaka, M. On the Possibility of GW190425 Being a Black Hole–Neutron Star Binary Merger. Astrophys. J. Lett. 2020, 890, L4. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Ayriyan, A.; Blaschke, D.; Grunfeld, A.G.; Alvarez-Castillo, D.; Grigorian, H.; Abgaryan, V. Bayesian analysis of multimessenger M-R data with interpolated hybrid EoS. arXiv 2021, arXiv:2102.13485. [Google Scholar] [CrossRef]
- Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 2021, 103, 025808. [Google Scholar] [CrossRef]
- Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidaña, I. Was GW190814 a Black Hole–Strange Quark Star System? Phys. Rev. Lett. 2021, 126, 162702. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophys. J. Lett. 2021, 915, L5. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Buballa, M.; Carignano, S. Self-bound quark matter in the NJL model revisited: From schematic droplets to domain-wall solitons. Phys. Rev. D 2013, 87, 054004. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.B.; Koch, V.; Randrup, J. The Surface Tension of Quark Matter in a Geometrical Approach. Phys. Rev. C 2012, 86, 025203. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.J.; Li, J.Y.; Liang, J.Q.; Peng, G.X. Medium effects on the surface tension of strangelets in the extended quasiparticle model. Phys. Rev. C 2010, 82, 025809. [Google Scholar] [CrossRef]
- Palhares, L.F.; Fraga, E.S. Droplets in the cold and dense linear sigma model with quarks. Phys. Rev. D 2010, 82, 125018. [Google Scholar] [CrossRef] [Green Version]
- Carmo, T.A.S.d.; Lugones, G.; Grunfeld, A.G. Nucleation rate of color superconducting droplets in protoneutron stars. J. Phys. G 2013, 40, 035201. [Google Scholar] [CrossRef] [Green Version]
- Lugones, G.; Grunfeld, A.G. Critical spectrum of fluctuations for deconfinement at proto-neutron star cores. Phys. Rev. D 2011, 84, 085003. [Google Scholar] [CrossRef] [Green Version]
- Jaikumar, P.; Reddy, S.; Steiner, A.W. The Strange star surface: A Crust with nuggets. Phys. Rev. Lett. 2006, 96, 041101. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Rajagopal, K.; Reddy, S.; Steiner, A.W. The Stability of strange star crusts and strangelets. Phys. Rev. D 2006, 73, 114016. [Google Scholar] [CrossRef] [Green Version]
- Lugones, G.; Grunfeld, A.G. Surface and curvature properties of charged strangelets in compact objects. Phys. Rev. C 2021, 103, 035813. [Google Scholar] [CrossRef]
- Voskresensky, D.N.; Yasuhira, M.; Tatsumi, T. Charge screening at first order phase transitions and hadron quark mixed phase. Nucl. Phys. A 2003, 723, 291–339. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, T.; Yasuhira, M.; Voskresensky, D.N. Hadron quark mixed phase in neutron stars. Nucl. Phys. A 2003, 718, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Chiba, S.; Schulze, H.J.; Tatsumi, T. Hadron-quark mixed phase in hyperon stars. Phys. Rev. D 2007, 76, 123015. [Google Scholar] [CrossRef] [Green Version]
- Endo, T. Region of hadron-quark mixed phase in hybrid stars. Phys. Rev. C 2011, 83, 068801. [Google Scholar] [CrossRef] [Green Version]
- Maslov, K.; Yasutake, N.; Ayriyan, A.; Blaschke, D.; Grigorian, H.; Maruyama, T.; Tatsumi, T.; Voskresensky, D.N. Hybrid equation of state with pasta phases and third family of compact stars. Phys. Rev. 2019, C100, 025802. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.J.; Maruyama, T.; Yasutake, N.; Tatsumi, T. Constraining quark-hadron interface tension in the multimessenger era. Phys. Rev. D 2019, 99, 103017. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.; Wu, X.; Ji, F.; Hu, J.; Shen, H. Hadron-quark mixed phase in the quark-meson coupling model. Phys. Rev. C 2021, 103, 025809. [Google Scholar] [CrossRef]
- Yasutake, N.; Lastowiecki, R.; Benic, S.; Blaschke, D.; Maruyama, T.; Tatsumi, T. Finite-size effects at the hadron-quark transition and heavy hybrid stars. Phys. Rev. C 2014, 89, 065803. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shen, H. Finite-size effects on the hadron-quark phase transition in neutron stars. Phys. Rev. C 2017, 96, 025802. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shen, H. Nuclear symmetry energy and hadron-quark mixed phase in neutron stars. Phys. Rev. C 2019, 99, 065802. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.J.; Maruyama, T.; Yasutake, N.; Tatsumi, T.; Shen, H.; Togashi, H. Systematic study on the quark-hadron mixed phase in compact stars. Phys. Rev. 2020, D102, 023031. [Google Scholar] [CrossRef]
- Balian, R.; Bloch, C. Distribution of eigenfrequencies for the wave equation in a finite domain. 1. Three-dimensional problem with smooth boundary surface. Ann. Phys. 1970, 60, 401–447. [Google Scholar] [CrossRef]
- Hansson, T.H.; Jaffe, R.L. The Multiple Reflection Expansion for Confined Scalar, Dirac and Gauge Fields. Ann. Phys. 1983, 151, 204. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Vector interactions inhibit quark-hadron mixed phases in neutron stars. Phys. Rev. D 2021, 104, L101301. [Google Scholar] [CrossRef]
- Shchechilin, N.N.; Chugunov, A.I. Surface energy of nuclear matter above and below neutron drip with the Skyrme-type effective interactions. J. Phys. Conf. Ser. 2020, 1697, 012025. [Google Scholar] [CrossRef]
- Douchin, F.; Haensel, P.; Meyer, J. Nuclear surface and curvature properties for SLy Skyrme forces and nuclei in the inner neutron-star crust. Nucl. Phys. A 2000, 665, 419–446. [Google Scholar] [CrossRef]
- Avancini, S.S.; Menezes, D.P.; Alloy, M.D.; Marinelli, J.R.; Moraes, M.M.W.; Providencia, C. Warm and cold pasta phase in relativistic mean field theory. Phys. Rev. C 2008, 78, 015802. [Google Scholar] [CrossRef]
- Huang, S.; Potvin, J.; Rebbi, C.; Sanielevici, S. Surface Tension in Finite Temperature Quantum Chromodynamics. Phys. Rev. D 1990, 42, 2864, Erratum in Phys. Rev. D 1991, 43, 2056. [Google Scholar] [CrossRef] [PubMed]
- Alves, N.A. Surface tension in SU(3) at finite temperature. Phys. Rev. D 1992, 46, 3678–3681. [Google Scholar] [CrossRef]
- Kajantie, K.; Karkkainen, L.; Rummukainen, K. Tension of the interface between two ordered phases in lattice SU(3) gauge theory. Nucl. Phys. B 1991, 357, 693–712. [Google Scholar] [CrossRef]
- Brower, R.; Huang, S.; Potvin, J.; Rebbi, C. The Surface tension of nucleating hadrons using the free energy of an isolated quark. Phys. Rev. D 1992, 46, 2703–2708. [Google Scholar] [CrossRef]
- Berger, M.; Jaffe, R. Radioactivity in strange quark matter. Phys. Rev. C 1987, 35, 213–225. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Surface tension of highly magnetized degenerate quark matter. Phys. Rev. C 2017, 95, 015804. [Google Scholar] [CrossRef] [Green Version]
- Lugones, G.; Grunfeld, A.G. Surface tension of hot and dense quark matter under strong magnetic fields. Phys. Rev. C 2019, C99, 035804. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.F.; Pinto, M.B. Surface tension of magnetized quark matter. Phys. Rev. C 2013, 88, 025207. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.Y.; Liu, Y.X. Interface tension and interface entropy in the 2+1 flavor Nambu-Jona-Lasinio model. Phys. Rev. D 2014, 89, 074041. [Google Scholar] [CrossRef] [Green Version]
- Kroff, D.; Fraga, E.S. Nucleating quark droplets in the core of magnetars. Phys. Rev. D 2015, 91, 025017. [Google Scholar] [CrossRef] [Green Version]
- Mintz, B.W.; Stiele, R.; Ramos, R.O.; Schaffner-Bielich, J. Phase diagram and surface tension in the three-flavor Polyakov-quark-meson model. Phys. Rev. D 2013, 87, 036004. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Liu, Y.X. Interface Effect in QCD Phase Transitions via Dyson-Schwinger Equation Approach. Phys. Rev. D 2016, 94, 094030. [Google Scholar] [CrossRef] [Green Version]
- Fraga, E.S.; Hippert, M.; Schmitt, A. Surface tension of dense matter at the chiral phase transition. Phys. Rev. D 2019, D99, 014046. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.J.; Peng, G.X.; Sun, T.T.; Guo, W.L.; Lu, D.H.; Jaikumar, P. Interface effects of strange quark matter with density dependent quark masses. Phys. Rev. D 2018, 98, 034031. [Google Scholar] [CrossRef] [Green Version]
- Lugones, G.; Grunfeld, A.; Al Ajmi, M. Surface tension and curvature energy of quark matter in the Nambu-Jona-Lasinio model. Phys. Rev. C 2013, 88, 045803. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. Astrophys. J. 1964, 140, 417–433, Erratum in Astrophys. J. 1964, 140, 1342. [Google Scholar] [CrossRef]
- Harrison, B.; Thorne, K.; Wakano, M.; Wheeler, J. Gravitation Theory and Gravitational Collapse; University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Vasquez Flores, C.; Lenzi, C.; Lugones, G. Radial pulsations of hybrid neutron stars. Int. J. Mod. Phys. Conf. Ser. 2012, 18, 105–108. [Google Scholar] [CrossRef]
- Pereira, J.P.; Flores, C.V.; Lugones, G. Phase transition effects on the dynamical stability of hybrid neutron stars. Astrophys. J. 2018, 860, 12. [Google Scholar] [CrossRef] [Green Version]
- Mariani, M.; Orsaria, M.G.; Ranea-Sandoval, I.F.; Lugones, G. Magnetized hybrid stars: Effects of slow and rapid phase transitions at the quark–hadron interface. Mon. Not. R. Astron. Soc. 2019, 489, 4261–4277. [Google Scholar] [CrossRef]
- Tonetto, L.; Lugones, G. Discontinuity gravity modes in hybrid stars: Assessing the role of rapid and slow phase conversions. Phys. Rev. D 2020, 101, 123029. [Google Scholar] [CrossRef]
- Pereira, J.P.; Bejger, M.; Tonetto, L.; Lugones, G.; Haensel, P.; Zdunik, J.L.; Sieniawska, M. Probing elastic quark phases in hybrid stars with radius measurements. Astrophys. J. 2021, 910, 145. [Google Scholar] [CrossRef]
- Parisi, A.; Flores, C.V.; Lenzi, C.H.; Chen, C.S.; Lugones, G. Hybrid stars in the light of the merging event GW170817. J. Cosmol. Astropart. Phys. 2021, 2021, 42. [Google Scholar] [CrossRef]
- Lugones, G.; Mariani, M.; Ranea-Sandoval, I.F. Slow stable hybrid stars: A new class of compact stars that fulfills all current observational constraints. 2021; Submitted. [Google Scholar]
- Flores, C.V.; Castro, L.B.; Lugones, G. Properties of strongly magnetized ultradense matter and its effects on magnetar pulsations. Phys. Rev. C 2016, 94, 015807. [Google Scholar] [CrossRef] [Green Version]
- Vasquez Flores, C.; Lugones, G. Radial oscillations of color superconducting self-bound quark stars. Phys. Rev. D 2010, 82, 063006. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, O.G.; Lugones, G. The properties of strange stars in the quark mass-density-dependent model. Int. J. Mod. Phys. D 1998, 7, 29–48. [Google Scholar] [CrossRef]
- Jiménez, J.C.; Fraga, E.S. Radial oscillations in neutron stars from QCD. Phys. Rev. D 2021, 104, 014002. [Google Scholar] [CrossRef]
- Gondek, D.; Haensel, P.; Zdunik, J.L. Radial pulsations and stability of protoneutron stars. Astron. Astrophys. 1997, 325, 217–227. [Google Scholar]
- Di Clemente, F.; Mannarelli, M.; Tonelli, F. Reliable description of the radial oscillations of compact stars. Phys. Rev. D 2020, 101, 103003. [Google Scholar] [CrossRef]
- Slezov, V.V. Kinetics of First-Order Phase Transitions; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; ISBN 978-3-527-62777-6. [Google Scholar]
- Olesen, M.L.; Madsen, J. Nucleation of quark matter bubbles in neutron stars. Phys. Rev. D 1994, 49, 2698–2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugones, G.; Benvenuto, O. Effect of trapped neutrinos in the hadron matter to quark matter transition. Phys. Rev. D 1998, 58, 083001. [Google Scholar] [CrossRef]
- Iida, K.; Sato, K. Effects of hyperons on the dynamical deconfinement transition in cold neutron star matter. Phys. Rev. C 1998, 58, 2538–2559. [Google Scholar] [CrossRef] [Green Version]
- Bombaci, I.; Parenti, I.; Vidana, I. Quark deconfinement and implications for the radius and the limiting mass of compact stars. Astrophys. J. 2004, 614, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Bombaci, I.; Logoteta, D.; Vidaña, I.; Providência, C. Quark matter nucleation in neutron stars and astrophysical implications. Eur. Phys. J. A 2016, 52, 58. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Han, S.; Schwenzer, K. Phase conversion dissipation in multicomponent compact stars. Phys. Rev. C 2015, 91, 055804. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Bastian, N.U.F.; Wu, M.R.; Baklanov, P.; Sorokina, E.; Blinnikov, S.; Typel, S.; Klähn, T.; Blaschke, D.B. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nat. Astron. 2018, 2, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Baiotti, L.; Giacomazzo, B.; Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to black hole. Phys. Rev. D 2008, 78, 084033. [Google Scholar] [CrossRef] [Green Version]
- Weih, L.R.; Hanauske, M.; Rezzolla, L. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett. 2020, 124, 171103. [Google Scholar] [CrossRef]
- Bauswein, A.; Bastian, N.U.F.; Blaschke, D.B.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Oertel, M. Identifying a first-order phase transition in neutron star mergers through gravitational waves. Phys. Rev. Lett. 2019, 122, 061102. [Google Scholar] [CrossRef] [Green Version]
- Pratten, G.; Schmidt, P.; Hinderer, T. Gravitational-Wave Asteroseismology with Fundamental Modes from Compact Binary Inspirals. Nat. Commun. 2020, 11, 2553. [Google Scholar] [CrossRef] [PubMed]
- Miniutti, G.; Pons, J.A.; Berti, E.; Gualtieri, L.; Ferrari, V. Non-radial oscillation modes as a probe of density discontinuities in neutron stars. Mon. Not. R. Astron. Soc. 2003, 338, 389–400. [Google Scholar] [CrossRef]
- Andersson, N.; Ferrari, V.; Jones, D.I.; Kokkotas, K.D.; Krishnan, B.; Read, J.S.; Rezzolla, L.; Zink, B. Gravitational waves from neutron stars: Promises and challenges. Gen. Relativ. Gravit. 2011, 43, 409–436. [Google Scholar] [CrossRef] [Green Version]
- Kokkotas, K.D.; Apostolatos, T.A.; Andersson, N. The inverse problem for pulsating neutron stars: A ‘fingerprint analysis’ for the supranuclear equation of state. Mon. Not. R. Astron. Soc. 2001, 320, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 2017, 34, 044001. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, R.; Das, A.; Radice, D.; Padamata, S.; Prakash, A.; Logoteta, D.; Perego, A.; Godzieba, D.A.; Bernuzzi, S.; Bombaci, I.; et al. Numerical relativity simulations of prompt collapse mergers: Threshold mass and phenomenological constraints on neutron star properties after GW170817. arXiv 2021, arXiv:2111.05183. [Google Scholar]
- Prakash, A.; Radice, D.; Logoteta, D.; Perego, A.; Nedora, V.; Bombaci, I.; Kashyap, R.; Bernuzzi, S.; Endrizzi, A. Signatures of deconfined quark phases in binary neutron star mergers. Phys. Rev. D 2021, 104, 083029. [Google Scholar] [CrossRef]
Equation of State + Method | Reference | [] | Remarks |
---|---|---|---|
Lattice QCD | [51,52,53,54] | 5–20 | vanishing baryon chemical potential, finite T |
MIT bag model + Multiple Refection Expansion | [33,55,56,57] | <25 | for , finite T, magnetic field, -trapping |
Nambu-Jona-Lasinio model + geometric approach/thin wall | [26,58,59] | <25–30 for , ∼70 for | finite T, with/without magnetic field B |
Linear sigma model + geometric approach/thin wall | [26,28,60] | <15 for , <60 for | zero/finite T, with/without magnetic field B |
Polyakov-quark-meson model + thin wall | [61] | <30 | finite T |
Dyson-Schwinger equation + thin wall approximation | [62] | <40 | finite T |
Nucleon-meson model + domain wall or bubble profiles | [63] | <15 | finite T, model does not contain explicit quark degrees of freedom |
Equivparticle model + Multiple Refection Expansion/finite box | [64] | 3–10 | |
Quasiparticle model + Multiple Refection Expansion | [27] | 30–70 | |
Nambu-Jona-Lasinio model + Multiple Refection Expansion | [65] | 145–165 | finite T |
vector MIT bag model + Multiple Refection Expansion | [47] | 5–300 | for , finite T, -trapping, huge vector contribution to |
Detector | Distance | f-Mode | g-Mode |
---|---|---|---|
LIGO/Virgo | |||
LIGO/Virgo | |||
Einstein | |||
Einstein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugones, G.; Grunfeld, A.G. Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics. Universe 2021, 7, 493. https://doi.org/10.3390/universe7120493
Lugones G, Grunfeld AG. Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics. Universe. 2021; 7(12):493. https://doi.org/10.3390/universe7120493
Chicago/Turabian StyleLugones, Germán, and Ana Gabriela Grunfeld. 2021. "Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics" Universe 7, no. 12: 493. https://doi.org/10.3390/universe7120493
APA StyleLugones, G., & Grunfeld, A. G. (2021). Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics. Universe, 7(12), 493. https://doi.org/10.3390/universe7120493