Testing General Relativity with Gravitational Waves: An Overview
Abstract
:1. Introduction
2. Model-Agnostic Tests of General Relativity from Gravitational-Wave Observations
2.1. Tests of Consistency with General Relativity
2.1.1. Residual Test
2.1.2. Inspiral-Merger-Ringdown Consistency Test
2.2. Parametrized Tests of GR Based on Generation and Propagation of GWs
2.2.1. Constraining the Parametrized Deviations from General Relativistic Inspiral-Merger-Ringdown Coefficients
2.2.2. Tests of BBH Nature from Spin-Induced Quadrupole Moment Measurements
2.2.3. Tests of Gravity from GW Propagation
2.3. Tests Based on the Merger Remnant Properties
2.3.1. No-Hair Theorem Based Tests from the Quasi-Normal Mode Ringdown Radiation (BH Spectroscopy)
2.3.2. Testing the Nature of Merger Remnant from the Measurement of Late Ringdown Echoes
2.4. Constraints on the Polarization States of GWs
3. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GW | Gravitational wave |
BBH | Binary black hole |
GR | General theory of relativity |
NG | Newtonian gravity |
GWTC | Gravitational-wave transient catalog |
O1/O2/O3 | First/Second/Third observing runs of LIGO/Virgo |
LVK | LIGO-Virgo-KAGRA scientific collaboration |
LVC | LIGO-Virgo scientific collaboration |
1 | |
2 | Inner-most stable circular orbit of a Kerr BH is the smallest stable circular orbit in which a test particle can stably orbit around the BH. |
3 | Current analysis is taking into account for the dominant mode and neglecting any higher-mode contributions to the frequency evaluation. |
4 | Neglecting the instrumental noise, statistical fluctuations, and waveform model uncertainties, etc. These effects can lead to an offset from zero. |
References
- Kepler, J. Astronomia nova..., seu Physica Coelestis, Tradita Commentariis de Motibus Stellae Martis; Voegelin: Heidelberg, Germany, 1609. [Google Scholar] [CrossRef]
- Newton, I. Philosophiae Naturalis Principia Mathematica; Jussu Societatis Regiae ac Typis Josephi Streater: London, UK, 1687. [Google Scholar] [CrossRef]
- Einstein, A. Über Gravitationswellen. Sitzungsber. K. Preuss. Akad. Wiss. 1918, 1, 154–167. [Google Scholar]
- Einstein, A. Approximative Integration of the Field Equations of Gravitation. Sitzungsber. Preuss. Akad. Wiss. 1916, 1, 688. [Google Scholar]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astroph. J. Lett. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Taylor, J.H. Nobel Lecture: Binary pulsars and relativistic gravity. Rev. Mod. Phys. 1994, 66, 711. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L. Post-Newtonian Theory and Its Application. In Proceedings of the 12th Workshop on General Relativity and Gravitation (JGRG12), Tokyo, Japan, 25–28 November 2002. [Google Scholar]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.; Lyne, A.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Astrophysical Implications of the Binary Black-Hole Merger GW150914. Astrophys. J. 2016, 818, L22. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- LIGO Scientific Collaboration. 2009. Available online: https://dcc.ligo.org/LIGO-M060056/public (accessed on 26 April 2021).
- LIGO Scientific Collaboration. 2018. Available online: https://www.advancedligo.mit.edu/ (accessed on 26 April 2021).
- Acernese, F.; Amico, P.; Alshourbagy, M.; Antonucci, F.; Aoudia, S.; Avino, S.; Babusci, D.; Ballardin, G.; Barone, F.; Barsotti, L.; et al. The Virgo status. Class. Quantum Gravity 2006, 23, S635. [Google Scholar] [CrossRef] [Green Version]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2015, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101, Erratum in 2018, 121, 129901. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence. Astrophys. J. 2017, 851, L35. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. Phys. Rev. D 2020, 102, 043015. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Venumadhav, T.; Zackay, B.; Roulet, J.; Dai, L.; Zaldarriaga, M. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 2020, 101, 083030. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D 2021, 103, 122002. [Google Scholar] [CrossRef]
- Cardoso, V.; Franzin, E.; Maselli, A.; Pani, P.; Raposo, G. Testing strong-field gravity with tidal Love numbers. Phys. Rev. D 2017, 95, 084014. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Relativ. 2019, 22, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Jetzer, P. Boson stars. Phys. Rep. 1992, 220, 163–227. [Google Scholar] [CrossRef]
- Liddle, A.R.; Madsen, M.S. The Structure and formation of boson stars. Int. J. Mod. Phys. D 1992, 1, 101–144. [Google Scholar] [CrossRef]
- Schunck, F.E.; Mielke, E.W. General relativistic boson stars. Class. Quantum Gravity 2003, 20, R301–R356. [Google Scholar] [CrossRef] [Green Version]
- Liebling, S.L.; Palenzuela, C. Dynamical Boson Stars. Living Rev. Relativ. 2012, 15, 6, Erratum in 2017, 20, 5. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.; Cardoso, V.; Herdeiro, C.A.R.; Radu, E. Proca stars: Gravitating Bose Einstein condensates of massive spin 1 particles. Phys. Lett. B 2016, 752, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Friedberg, R.; Lee, T.; Pang, Y. MINI—SOLITON STARS. Phys. Rev. D 1987, 35, 3640. [Google Scholar] [CrossRef]
- Friedberg, R.; Lee, T.; Pang, Y. Scalar Soliton Stars and Black Holes. Phys. Rev. D 1987, 35, 3658. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.D. Spinning boson stars with large self-interaction. Phys. Rev. D. 1997, 55, 6081–6091. [Google Scholar] [CrossRef]
- Visinelli, L.; Gondolo, P. Axion cold dark matter in view of BICEP2 results. Phys. Rev. Lett. 2014, 113, 011802. [Google Scholar] [CrossRef] [Green Version]
- Chirenti, C.; Rezzolla, L. Did GW150914 produce a rotating gravastar? Phys. Rev. D 2016, 94, 084016. [Google Scholar] [CrossRef] [Green Version]
- Chirenti, C.B.M.H.; Rezzolla, L. How to tell a gravastar from a black hole. Class. Quantum Gravity 2007, 24, 4191–4206. [Google Scholar] [CrossRef]
- Lobo, F.S. Stable dark energy stars. Class. Quantum Gravity 2006, 23, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.M. Stable gravastars with generalised exteriors. Class. Quantum Gravity 2005, 22, 4551–4562. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Wiltshire, D.L. Stable gravastars: An Alternative to black holes? Class. Quantum Gravity 2004, 21, 1135–1152. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. Gravitational condensate stars: An alternative to black holes. arXiv 2001, arXiv:gr-qc/0109035v5. [Google Scholar]
- Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.; et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 2015, 91, 042003. [Google Scholar] [CrossRef] [Green Version]
- LIGO Scientific Collaboration. LIGO Algorithm Library—LALSuite. Free Software (GPL). Available online: https://git.ligo.org/lscsoft/lalsuite (accessed on 1 November 2020).
- Cornish, N.J.; Littenberg, T.B. BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches. Class. Quantum Gravity 2015, 32, 135012. [Google Scholar] [CrossRef]
- Littenberg, T.B.; Cornish, N.J. Bayesian inference for spectral estimation of gravitational wave detector noise. Phys. Rev. D 2015, 91, 084034. [Google Scholar] [CrossRef] [Green Version]
- Romero-Shaw, I.M.; Talbot, C.; Biscoveanu, S.; D’Emilio, V.; Ashton, G.; Berry, C.P.L.; Coughlin, S.; Galaudage, S.; Hoy, C.; Hübner, M.; et al. Bayesian inference for compact binary coalescences with bilby: Validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Mon. Not. Roy. Astron. Soc. 2020, 499, 3295–3319. [Google Scholar] [CrossRef]
- Ashton, G.; Hübner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divakarla, A.; Easter, P.J.; Goncharov, B.; et al. BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 2019, 241, 27. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.J.E.; Ashton, G.; Vajpeyi, A.; Talbot, C. Massively parallel Bayesian inference for transient gravitational-wave astronomy. Mon. Not. Roy. Astron. Soc. 2020, 498, 4492–4502. [Google Scholar] [CrossRef]
- Carullo, G.; Del Pozzo, W.; Veitch, J. Observational black hole spectroscopy: A time-domain multimode analysis of GW150914. Phys. Rev. D 2019, 99, 123029. [Google Scholar] [CrossRef] [Green Version]
- Isi, M.; Giesler, M.; Farr, W.M.; Scheel, M.A.; Teukolsky, S.A. Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 2019, 123, 111102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, P.T.H.; Lo, R.K.L.; Wong, I.C.F.; Li, T.G.F.; Van Den Broeck, C. Generic searches for alternative gravitational wave polarizations with networks of interferometric detectors. Phys. Rev. D 2020, 101, 104055. [Google Scholar] [CrossRef]
- Husa, S.; Khan, S.; Hannam, M.; Pürrer, M.; Ohme, F.; Jiménez Forteza, X.; Bohé, A. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys. Rev. D 2016, 93, 044006. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Husa, S.; Hannam, M.; Ohme, F.; Pürrer, M.; Jiménez Forteza, X.; Bohé, A. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 2016, 93, 044007. [Google Scholar] [CrossRef] [Green Version]
- Hannam, M.; Schmidt, P.; Bohé, A.; Haegel, L.; Husa, S.; Ohme, F.; Pratten, G.; Pürrer, M. Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms. Phys. Rev. Lett. 2014, 113, 151101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohé, A.; Shao, L.; Taracchini, A.; Buonanno, A.; Babak, S.; Harry, I.W.; Hinder, I.; Ossokine, S.; Pürrer, M.; Raymond, V.; et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 2017, 95, 044028. [Google Scholar] [CrossRef] [Green Version]
- Li, T.G.F.; Del Pozzo, W.; Vitale, S.; Van Den Broeck, C.; Agathos, M.; Veitch, J.; Grover, K.; Sidery, T.; Sturani, R.; Vecchio, A. Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations. Phys. Rev. D 2012, 85, 082003. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.G. Generic bounds on dipolar gravitational radiation from inspiralling compact binaries. Class. Quantum Gravity 2012, 29, 075011. [Google Scholar] [CrossRef] [Green Version]
- Sampson, L.; Cornish, N.; Yunes, N. Gravitational Wave Tests of Strong Field General Relativity with Binary Inspirals: Realistic Injections and Optimal Model Selection. Phys. Rev. D 2013, 87, 102001. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N. Tests of general relativity from timing the double pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Hughes, S.A. Binary Pulsar Constraints on the Parameterized post-Einsteinian Framework. Phys. Rev. D 2010, 82, 082002. [Google Scholar] [CrossRef] [Green Version]
- Mirshekari, S.; Yunes, N.; Will, C.M. Constraining Generic Lorentz Violation and the Speed of the Graviton with Gravitational Waves. Phys. Rev. D 2012, 85, 024041. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X. Effects of waveform model systematics on the interpretation of GW150914. Class. Quantum Gravity 2017, 34, 104002. [Google Scholar] [CrossRef] [Green Version]
- Cahillane, C.; Betzwieser, J.; Brown, D.A.; Goetz, E.; Hall, E.D.; Izumi, K.; Kandhasamy, S.; Karki, S.; Kissel, J.S.; Mendell, G.; et al. Calibration uncertainty for Advanced LIGO’s first and second observing runs. Phys. Rev. D 2017, 96, 102001. [Google Scholar] [CrossRef] [Green Version]
- Viets, A.D.; Wade, M.; Urban, A.L.; Kandhasamy, S.; Betzwieser, J.; Brown, D.A.; Burguet-Castell, J.; Cahillane, C.; Goetz, E.; Izumi, K.; et al. Reconstructing the calibrated strain signal in the Advanced LIGO detectors. Class. Quantum Gravity 2018, 35, 095015. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Goetz, E.; Kissel, J.S.; Betzwieser, J.; Karki, S.; Viets, A.; Wade, M.; Bhattacharjee, D.; Bossilkov, V.; Covas, P.B.; et al. Characterization of systematic error in Advanced LIGO calibration. Class. Quantum Gravity 2020, 37, 225008. [Google Scholar] [CrossRef]
- Driggers, J.C.; Vitale, S.; Lundgren, A.P.; Evans, M.; Kawabe, K.; Dwyer, S.E.; Izumi, K.; Schofield, R.M.S.; Effler, A.; Sigg, D.; et al. Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Phys. Rev. D 2019, 99, 042001. [Google Scholar] [CrossRef] [Green Version]
- Vajente, G.; Huang, Y.; Isi, M.; Driggers, J.C.; Kissel, J.S.; Szczepanczyk, M.J.; Vitale, S. Machine-learning nonstationary noise out of gravitational-wave detectors. Phys. Rev. D 2020, 101, 042003. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D 2019, 100, 104036. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 2016, 93, 122003. [Google Scholar] [CrossRef] [Green Version]
- Ohme, F.; Hannam, M.; Husa, S. Reliability of complete gravitational waveform models for compact binary coalescences. Phys. Rev. D 2011, 84, 064029. [Google Scholar] [CrossRef] [Green Version]
- Ohme, F. Analytical meets numerical relativity-status of complete gravitational waveform models for binary black holes. Class. Quantum Gravity 2012, 29, 124002. [Google Scholar] [CrossRef] [Green Version]
- Lindblom, L.; Owen, B.J.; Brown, D.A. Model Waveform Accuracy Standards for Gravitational Wave Data Analysis. Phys. Rev. D 2008, 78, 124020. [Google Scholar] [CrossRef] [Green Version]
- Baird, E.; Fairhurst, S.; Hannam, M.; Murphy, P. Degeneracy between mass and spin in black-hole-binary waveforms. Phys. Rev. D 2013, 87, 024035. [Google Scholar] [CrossRef]
- Johnson-McDaniel, N.K.; Ghosh, A.; Ghonge, S.; Saleem, M.; Krishnendu, N.V.; Clark, J.A. Investigating the relation between gravitational wave tests of general relativity. arXiv 2021, arXiv:2109.06988. [Google Scholar]
- Jiménez-Forteza, X.; Keitel, D.; Husa, S.; Hannam, M.; Khan, S.; Pürrer, M. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Phys. Rev. D 2017, 95, 064024. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, F.; Barausse, E.; Rezzolla, L. The final spin from binary black holes in quasi-circular orbits. Astrophys. J. 2016, 825, L19. [Google Scholar] [CrossRef]
- Healy, J.; Lousto, C.O. Remnant of binary black-hole mergers: New simulations and peak luminosity studies. Phys. Rev. D 2017, 95, 024037. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Johnson-McDaniel, N.K.; Ghosh, A.; Kant Mishra, C.; Ajith, P.; Del Pozzo, W.; Berry, C.P.L.; Nielsen, A.B.; London, L. Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Class. Quantum Gravity 2018, 35, 014002. [Google Scholar] [CrossRef] [Green Version]
- Healy, J.; Lousto, C.O.; Zlochower, Y. Remnant mass, spin, and recoil from spin aligned black-hole binaries. Phys. Rev. D 2014, 90, 104004. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Ghosh, A.; Johnson-McDaniel, N.K.; Mishra, C.K.; Ajith, P.; Del Pozzo, W.; Nichols, D.A.; Chen, Y.; Nielsen, A.B.; Berry, C.P.L.; et al. Testing general relativity using golden black-hole binaries. Phys. Rev. D 2016, 94, 021101. [Google Scholar] [CrossRef] [Green Version]
- Carson, Z.; Yagi, K. Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations. Phys. Rev. D 2020, 101, 044047. [Google Scholar] [CrossRef] [Green Version]
- Carson, Z.; Yagi, K. Parameterized and Consistency Tests of Gravity with GravitationalWaves: Current and Future. Proceedings 2019, 17, 5. [Google Scholar] [CrossRef] [Green Version]
- Carson, Z.; Yagi, K. Multi-band gravitational wave tests of general relativity. Class. Quantum Gravity 2020, 37, 02LT01. [Google Scholar] [CrossRef] [Green Version]
- Breschi, M.; O’Shaughnessy, R.; Lange, J.; Birnholtz, O. IMR consistency tests with higher modes on gravitational signals from the second observing run of LIGO and Virgo. Class. Quantum Gravity 2019, 36, 245019. [Google Scholar] [CrossRef] [Green Version]
- Mroué, A.H.; Scheel, M.A.; Szilágyi, B.; Pfeiffer, H.P.; Boyle, M.; Hemberger, D.A.; Kidder, L.E.; Lovelace, G.; Ossokine, S.; Taylor, N.W.; et al. Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy. Phys. Rev. Lett. 2013, 111, 241104. [Google Scholar] [CrossRef]
- Hinder, I.; Buonanno, A.; Boyle, M.; Etienne, Z.B.; Healy, J.; Johnson-McDaniel, N.K.; Nagar, A.; Nakano, H.; Pan, Y.; Pfeiffer, H.P.; et al. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Class. Quantum Gravity 2013, 31, 025012. [Google Scholar] [CrossRef]
- Baker, J.G.; van Meter, J.R.; McWilliams, S.T.; Centrella, J.; Kelly, B.J. Consistency of Post-Newtonian Waveforms with Numerical Relativity. Phys. Rev. Lett. 2007, 99, 181101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, J.G.; Centrella, J.; Choi, D.I.; Koppitz, M.; van Meter, J. Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes. Phys. Rev. Lett. 2006, 96, 111102. [Google Scholar] [CrossRef] [Green Version]
- Campanelli, M.; Lousto, C.O.; Marronetti, P.; Zlochower, Y. Accurate Evolutions of Orbiting Black-Hole Binaries without Excision. Phys. Rev. Lett. 2006, 96, 111101. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, F. Evolution of Binary Black-Hole Spacetimes. Phys. Rev. Lett. 2005, 95, 121101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchet, L.; Faye, G.; Iyer, B.R.; Sinha, S. The Third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits. Class. Quantum Gravity 2008, 25, 165003, Erratum in 2012, 29, 239501. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Jaranowski, P.; Schäfer, G. Dimensional regularization of the gravitational interaction of point masses. Phys. Lett. B 2001, 513, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, B.R. Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order. Phys. Rev. Lett. 2004, 93, 091101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchet, L.; Damour, T.; Iyer, B.R.; Will, C.M.; Wiseman, A.G. Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order. Phys. Rev. Lett. 1995, 74, 3515–3518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arun, K.G.; Iyer, B.R.; Qusailah, M.S.S.; Sathyaprakash, B.S. Testing post-Newtonian theory with gravitational wave observations. Class. Quantum Grav. 2006, 23, L37. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K.; Stein, L.C.; Yunes, N.; Tanaka, T. Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic Modified Gravity. Phys. Rev. D 2012, 85, 064022, Erratum in 2016, 93, 029902. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.G.; Iyer, B.R.; Qusailah, M.S.S.; Sathyaprakash, B.S. Probing the non-linear structure of general relativity with binary black holes. Phys. Rev. D 2006, 74, 024006. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Pretorius, F. Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework. Phys. Rev. D 2009, 80, 122003. [Google Scholar] [CrossRef] [Green Version]
- Mishra, C.K.; Arun, K.G.; Iyer, B.R.; Sathyaprakash, B.S. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope. Phys. Rev. D 2010, 82, 064010. [Google Scholar] [CrossRef] [Green Version]
- Agathos, M.; Del Pozzo, W.; Li, T.G.F.; Van Den Broeck, C.; Veitch, J.; Vitale, S. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Phys. Rev. D 2014, 89, 082001. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L.; Damour, T.; Esposito-Farese, G.; Iyer, B.R. Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses. Phys. Rev. D 2005, 71, 124004. [Google Scholar] [CrossRef] [Green Version]
- Kidder, L.E. Coalescing binary systems of compact objects to postNewtonian 5/2 order. 5. Spin effects. Phys. Rev. D 1995, 52, 821–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchet, L.; Buonanno, A.; Faye, G. Higher-order spin effects in the dynamics of compact binaries. II. Radiation field. Phys. Rev. D 2006, 74, 104034, Erratum in 2007, 75, 049903Erratum in 2010, 81, 089901. [Google Scholar] [CrossRef] [Green Version]
- Arun, K.G.; Buonanno, A.; Faye, G.; Ochsner, E. Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms. Phys. Rev. D 2009, 79, 104023, Erratum in 2011, 84, 049901. [Google Scholar] [CrossRef] [Green Version]
- Bohé, A.; Marsat, S.; Faye, G.; Blanchet, L. Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binaries. Class. Quantum Gravity 2013, 30, 075017. [Google Scholar] [CrossRef] [Green Version]
- Marsat, S.; Bohe, A.; Faye, G.; Blanchet, L. Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems. Class. Quantum Gravity 2013, 30, 055007. [Google Scholar] [CrossRef]
- Bohé, A.; Marsat, S.; Blanchet, L. Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries. Class. Quantum Gravity 2013, 30, 135009. [Google Scholar] [CrossRef]
- Blanchet, L. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Relativ. 2014, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Jaranowski, P.; Schäfer, G. Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems. Phys. Rev. D 2014, 89, 064058. [Google Scholar] [CrossRef] [Green Version]
- Bohé, A.; Faye, G.; Marsat, S.; Porter, E.K. Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order. Class. Quantum Gravity 2015, 32, 195010. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Tests of General Relativity with GW170817. Phys. Rev. Lett. 2019, 123, 011102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunes, N.; Yagi, K.; Pretorius, F. Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226. Phys. Rev. D 2016, 94, 084002. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Datta, S.; Kastha, S.; Borhanian, S.; Arun, K.G.; Sathyaprakash, B.S. Multiparameter tests of general relativity using multiband gravitational-wave observations. Phys. Rev. Lett. 2020, 125, 201101. [Google Scholar] [CrossRef]
- Meidam, J.; Tsang, K.W.; Goldstein, J.; Agathos, M.; Ghosh, A.; Haster, C.-J.; Raymond, V.; Samajdar, A.; Schmidt, P.; Smith, R.; et al. Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Phys. Rev. D 2018, 97, 044033. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Hannam, M.; Husa, S.; Ajith, P. Tracking the precession of compact binaries from their gravitational-wave signal. Phys. Rev. D 2011, 84, 024046. [Google Scholar] [CrossRef] [Green Version]
- Pürrer, M. Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins. Phys. Rev. D 2016, 93, 064041. [Google Scholar] [CrossRef] [Green Version]
- Hansen, R.O. Multipole moments of stationary space-times. J. Math. Phys. 1974, 15, 46–52. [Google Scholar] [CrossRef]
- Carter, B. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev. Lett. 1971, 26, 331–333. [Google Scholar] [CrossRef]
- Gürlebeck, N. No-hair theorem for Black Holes in Astrophysical Environments. Phys. Rev. Lett. 2015, 114, 151102. [Google Scholar] [CrossRef]
- Pappas, G.; Apostolatos, T.A. Multipole Moments of numerical spacetimes. arXiv 2012, arXiv:1211.6299. [Google Scholar]
- Pappas, G.; Apostolatos, T.A. Revising the multipole moments of numerical spacetimes, and its consequences. Phys. Rev. Lett. 2012, 108, 231104. [Google Scholar] [CrossRef] [PubMed]
- Harry, I.; Hinderer, T. Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems. Class. Quantum Gravity 2018, 35, 145010. [Google Scholar] [CrossRef] [Green Version]
- Herdeiro, C.A.R.; Radu, E. Kerr black holes with scalar hair. Phys. Rev. Lett. 2014, 112, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnendu, N.V.; Saleem, M.; Samajdar, A.; Arun, K.G.; Del Pozzo, W.; Mishra, C.K. Constraints on the binary black hole nature of GW151226 and GW170608 from the measurement of spin-induced quadrupole moments. Phys. Rev. D 2019, 100, 104019. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.A.; Fang, H.; Gair, J.R.; Li, C.; Lovelace, G.; Mandel, I.; Thorne, K.S. Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. Phys. Rev. Lett. 2007, 99, 201102. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Mandel, I.; Gair, J.R. Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors. Phys. Rev. D 2012, 85, 062002. [Google Scholar] [CrossRef] [Green Version]
- Barack, L.; Cutler, C. Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D 2007, 75, 042003. [Google Scholar] [CrossRef] [Green Version]
- Babak, S.; Gair, J.; Sesana, A.; Barausse, E.; Sopuerta, C.F.; Berry, C.P.L.; Berti, E.; Amaro-Seoane, P.; Petiteau, A.; Klein, A. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. arXiv 2017, arXiv:1703.09722. [Google Scholar] [CrossRef] [Green Version]
- Krishnendu, N.V.; Arun, K.G.; Mishra, C.K. Testing the binary black hole nature of a compact binary coalescence. Phys. Rev. Lett. 2017, 119, 091101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnendu, N.V.; Mishra, C.K.; Arun, K.G. Spin-induced deformations and tests of binary black hole nature using third-generation detectors. Phys. Rev. D 2019, 99, 064008. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Relativ. 2005, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samajdar, A.; Arun, K.G. Projected constraints on the dispersion of gravitational waves using advanced ground- and space-based interferometers. Phys. Rev. D 2017, 96, 104027. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Doubly special relativity. Nature 2002, 418, 34–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Fractal universe and quantum gravity. Phys. Rev. Lett. 2010, 104, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, P.G.; Nelson, A.H. Propagation of gravitational waves in a magnetized plasma. Phys. Rev. D 1983, 28, 2382–2392. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Saha, A.; Saha, S. Interaction of a circularly polarised gravitational wave with a charged particle in a static magnetic background. Gen. Relativ. Gravit. 2015, 47, 65. [Google Scholar] [CrossRef] [Green Version]
- Varvoglis, H.; Papadopoulos, D. Chaotic interaction of charged particles with a gravitational wave. Astron. Astrophys. 1992, 261, 664–670. [Google Scholar]
- Grishchuk, L.P.; Polnarev, A.G. Gravitational waves and their interaction with matter and fields. Gen. Relativ. Gravit. II 1981, 2, 393. [Google Scholar]
- Kleidis, K.; Varvoglis, H.; Papadopoulos, D. Interaction of charged particles with gravitational waves of various polarizations and directions of propagation. Astron. Astrophys. 1993, 275, 309. [Google Scholar]
- Kleidis, K.; Varvoglis, H.; Papadopoulos, D.; Esposito, F.P. Non-linear interaction of a gravitational wave with a distribution of particles. Astron. Astrophys. 1995, 294, 313–321. [Google Scholar]
- Kleidis, K.; Varvoglis, H.; Papadopoulos, D. Parametric resonant acceleration of particles by gravitational waves. Class. Quantum Gravity 1996, 13, 2547. [Google Scholar] [CrossRef] [Green Version]
- Kleidis, K.; Varvoglis, H. Kinetic Description of Particle Interaction with a Gravitational Wave. Gen. Relativ. Gravit. 1997, 29, 499–514. [Google Scholar] [CrossRef]
- Wickramasinghe, T.; Rhodes, W.; Revalski, M. Interaction of Gravitational Waves with Charged Particles. Astrophys. Space Sci. Proc. 2015, 40, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Revalski, M.; Rhodes, W.; Wickramasinghe, T. The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications. Astrophys. Space Sci. Proc. 2015, 40, 301–309. [Google Scholar] [CrossRef]
- Kokkotas, K.D.; Schmidt, B.G. Quasinormal modes of stars and black holes. Living Rev. Relativ. 1999, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israel, W. Event Horizons in Static Vacuum Space-Times. Phys. Rev. 1967, 164, 1776–1779. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152–166. [Google Scholar] [CrossRef]
- Robinson, D.C. Uniqueness of the Kerr Black Hole. Phys. Rev. Lett. 1975, 34, 905–906. [Google Scholar] [CrossRef]
- Mazur, P.O. Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A Math. Gen. 1982, 15, 3173–3180. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Solutions of Two Problems in the Theory of Gravitational Radiation. Phys. Rev. Lett. 1970, 24, 611–615. [Google Scholar] [CrossRef]
- Teukolsky, S.A. Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. Astrophys. J. 1973, 185, 635–648. [Google Scholar] [CrossRef]
- Press, W.H. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole. Astrophys. J. 1971, 170, L105. [Google Scholar] [CrossRef]
- Vishveshwara, C.V. Stability of the Schwarzschild Metric. Phys. Rev. D 1970, 1, 2870–2879. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, O.; Kelly, B.J.; Krishnan, B.; Finn, L.S.; Garrison, D.; Lopez-Aleman, R. Black hole spectroscopy: Testing general relativity through gravitational wave observations. Class. Quantum Gravity 2004, 21, 787–804. [Google Scholar] [CrossRef] [Green Version]
- Berti, E.; Cardoso, V.; Will, C.M. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 2006, 73, 064030. [Google Scholar] [CrossRef] [Green Version]
- Gossan, S.; Veitch, J.; Sathyaprakash, B.S. Bayesian model selection for testing the no-hair theorem with black hole ringdowns. Phys. Rev. D 2012, 85, 124056. [Google Scholar] [CrossRef] [Green Version]
- Carullo, G.; van der Schaaf, L.; London, L.; Pang, P.T.H.; Tsang, K.W.; Hannuksela, O.A.; Meidam, J.; Agathos, M.; Samajdar, A.; Ghosh, A.; et al. Empirical tests of the black hole no-hair conjecture using gravitational-wave observations. Phys. Rev. D 2018, 98, 104020. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.; Buonanno, A.; Raymond, V. Black-hole Spectroscopy by Making Full Use of Gravitational-Wave Modeling. Phys. Rev. D 2018, 98, 084038. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, S.; Cabero, M.; Capano, C.D.; Krishnan, B.; Brown, D.A. Detectability of the subdominant mode in a binary black hole ringdown. Phys. Rev. D 2020, 102, 024023. [Google Scholar] [CrossRef]
- Bhagwat, S.; Forteza, X.J.; Pani, P.; Ferrari, V. Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Phys. Rev. D 2020, 101, 044033. [Google Scholar] [CrossRef] [Green Version]
- Cabero, M.; Westerweck, J.; Capano, C.D.; Kumar, S.; Nielsen, A.B.; Krishnan, B. Black hole spectroscopy in the next decade. Phys. Rev. D 2020, 101, 064044. [Google Scholar] [CrossRef] [Green Version]
- Kamaretsos, I.; Hannam, M.; Sathyaprakash, B. Is black-hole ringdown a memory of its progenitor? Phys. Rev. Lett. 2012, 109, 141102. [Google Scholar] [CrossRef] [Green Version]
- London, L.; Shoemaker, D.; Healy, J. Modeling ringdown: Beyond the fundamental quasinormal modes. Phys. Rev. D 2014, 90, 124032, Erratum in 2016, 94, 069902. [Google Scholar] [CrossRef] [Green Version]
- London, L.T. Modeling ringdown. II. Aligned-spin binary black holes, implications for data analysis and fundamental theory. Phys. Rev. D 2020, 102, 084052. [Google Scholar] [CrossRef]
- Cabero, M.; Capano, C.D.; Fischer-Birnholtz, O.; Krishnan, B.; Nielsen, A.B.; Nitz, A.H.; Biwer, C.M. Observational tests of the black hole area increase law. Phys. Rev. D 2018, 97, 124069. [Google Scholar] [CrossRef] [Green Version]
- Cotesta, R.; Buonanno, A.; Bohé, A.; Taracchini, A.; Hinder, I.; Ossokine, S. Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics. Phys. Rev. D 2018, 98, 084028. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Brito, R.; Buonanno, A. Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations. Phys. Rev. D 2021, 103, 124041. [Google Scholar] [CrossRef]
- Abedi, J.; Dykaar, H.; Afshordi, N. Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D 2017, 96, 082004. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, K.; Saijo, M.; Maeda, K.i. Gravitational waves from a test particle scattered by a neutron star: Axial mode case. Phys. Rev. D 1999, 60, 024004. [Google Scholar] [CrossRef] [Green Version]
- Lunin, O.; Mathur, S.D. Statistical interpretation of Bekenstein entropy for systems with a stretched horizon. Phys. Rev. Lett. 2002, 88, 211303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunin, O.; Mathur, S.D. AdS / CFT duality and the black hole information paradox. Nucl. Phys. B 2002, 623, 342–394. [Google Scholar] [CrossRef] [Green Version]
- Maggio, E.; Buoninfante, L.; Mazumdar, A.; Pani, P. How does a dark compact object ringdown? Phys. Rev. D 2020, 102, 064053. [Google Scholar] [CrossRef]
- McManus, R.; Berti, E.; Macedo, C.F.B.; Kimura, M.; Maselli, A.; Cardoso, V. Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes. Phys. Rev. D 2019, 100, 044061. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.B.; Capano, C.D.; Birnholtz, O.; Westerweck, J. Parameter estimation and statistical significance of echoes following black hole signals in the first Advanced LIGO observing run. Phys. Rev. D 2019, 99, 104012. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnendu, N.V.; Ohme, F. Testing General Relativity with Gravitational Waves: An Overview. Universe 2021, 7, 497. https://doi.org/10.3390/universe7120497
Krishnendu NV, Ohme F. Testing General Relativity with Gravitational Waves: An Overview. Universe. 2021; 7(12):497. https://doi.org/10.3390/universe7120497
Chicago/Turabian StyleKrishnendu, N. V., and Frank Ohme. 2021. "Testing General Relativity with Gravitational Waves: An Overview" Universe 7, no. 12: 497. https://doi.org/10.3390/universe7120497
APA StyleKrishnendu, N. V., & Ohme, F. (2021). Testing General Relativity with Gravitational Waves: An Overview. Universe, 7(12), 497. https://doi.org/10.3390/universe7120497