The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating
Abstract
:1. Introduction
2. Mechanisms of Modulating ULF/ELF/VLF Waves
2.1. Improved Methods Based on Traditional Amplitude Modulation
2.1.1. Beam Painting
2.1.2. Geometric Modulation
2.1.3. Preheating
2.1.4. Dual-Beam HF Modulation
2.2. Beat Wave Modulation
2.3. Thermal Cubic Non-Linearity Method
2.4. Ionospheric Current Drive
2.5. LH-to-Whistler Mode Conversion
3. Concluding Remarks
4. Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Dea, J.Y.; Hansen, P.M.; Boerner, W.-M. Low-frequency (ULF/ELF/VLF) radio polarimetry and some applications. In Radar Polarimetry; International Society for Optics and Photonics: Bellingham, WC, USA, 1993; Volume 1748, pp. 23–30. [Google Scholar] [CrossRef]
- Alpert, Y.L. Longitudinal ELF to LF electromagnetic oscillations and waves generated in the ionosphere under the influence of strong high-frequency electric field. J. Geophys. Res. 1995, 100, 289–304. [Google Scholar] [CrossRef]
- Inan, U.S. Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 2004, 31, L24805. [Google Scholar] [CrossRef] [Green Version]
- Cairó, L.; Lefeuvre, F. Localization of sources of ELF/VLF hiss observed in the magnetosphere: Three-dimensional ray tracing. J. Geophys. Res. 1986, 91, 4352–4364. [Google Scholar] [CrossRef]
- Gu, X.; Zhao, Z.; Ni, B.; Shprits, Y.; Zhou, C. Statistical analysis of pitch angle distribution of radiation belt energetic electrons near the geostationary orbit: CRRES observations. J. Geophys. Res. Space Phys. 2011, 116, A01208. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.S. Propagation of ELF/VLF Waves Excited by IONOSPHERIC Modulation and the Resonant Interaction with Energetic Electrons in the Magnetosphere. Ph.D. Thesis, Wuhan University, Wuhan, China, April 2014. [Google Scholar]
- Chang, S.; Zhu, Z.; Ni, B.; Cao, X.; Luo, W. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves. Adv. Space Res. 2016, 58, 1219–1228. [Google Scholar] [CrossRef]
- Mysore Nagaraja, S. Going beyond Chu’s Limit: ULF Radiation with Directly Modulated Spinning Magnet Arrays. Master of Science, UCLA. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2017. [Google Scholar]
- MHUGL. Available online: https://ss.sites.mtu.edu/mhugl/2019/10/30/project-sanguine-gecooper/ (accessed on 18 January 2021).
- Cohen, M.B.; Golkowski, M.; Lehtinen, N.G.; Inan, U.S.; McCarrick, M.J. HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere. J. Geophys. Res. Space Phys. 2012, 117, A05327. [Google Scholar] [CrossRef]
- Streltsov, A.V.; Berthelier, J.-J.; Chernyshov, A.A.; Frolov, V.L.; Honary, F.; Kosch, M.J.; McCoy, R.P.; Mishin, E.V.; Rietveld, M.T. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Sci. Rev. 2018, 214. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.W.; Davis, J.R. Radio frequency heating effects on electron density in the lower E region. J. Geophys. Res. 1973, 78, 5710–5717. [Google Scholar] [CrossRef]
- Getmantsev, G.G.; Zuikov, N.A.; Kotik, D.S.; Mironenko, L.F.; Mitiakov, N.A.; Rapoport, V.O.; Sazonov, I.A.; Trakhtengerts, V.I.; Eidman, V.I. Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. Sov. Phys. JETP Engl. Transl. 1974, 20, 229–232. [Google Scholar]
- Ferraro, A.J.; Lee, H.S.; Allshouse, R.; Carroll, K.; Tomko, A.A.; Kelly, F.J.; Joiner, R.G. VLF/ELF radiation from the ionospheric dynamo current system modulated by powerful HF signals. J. Atmos. Solar-Terr. Phys. 1982, 44, 1113–1122. [Google Scholar] [CrossRef]
- Belikovich, V.V.; Grach, S.M.; Karashtin, A.N.; Kotik, D.S.; Tokarev, Y.V. The “Sura” facility: Study of the atmosphere and space (a review). Radiophys. Quantum Electron. 2007, 50, 497–526. [Google Scholar] [CrossRef]
- Rietveld, M.T.; Senior, A.; Markkanen, J.; Westman, A. New capabilities of the upgraded EISCAT highpower HF facility. Radio Sci. 2016, 51, 1533–1546. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.R.; Strangeway, R.; Wright, D.M.; Davies, J.A.; Horne, R.B.; Yeoman, T.K.; Stocker, A.J.; Lester, M.; Rietveld, M.T.; Mann, I.R.; et al. FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet. Geophys. Res. Lett. 2000, 27, 3165–3168. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikova, E.; Robinson, T.R.; Davies, J.A.; Wright, D.M.; Lester, M. Excitation of Alfven waves by modulated HF heating of the ionosphere, with application to FAST observations. Ann. Geophys. 2002, 20, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Piddyachiy, D.; Inan, U.S.; Bell, T.F.; Lehtinen, N.G.; Parrot, M. DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater. J. Geophys. Res. 2008, 113, A10308. [Google Scholar] [CrossRef] [Green Version]
- Vartanyan, A.; Milikh, G.M.; Eliasson, B.; Najmi, A.C.; Parrot, M.; Papadopoulos, K. Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 2016, 51, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Ni, B.; Cao, X.; Zhang, X.; Zhu, Z.; Luo, W. Energetic Electron Diffusion by Modulated Heating of the Ionosphere. J. Geophys. Res. Space Phys. 2018, 123, 5516–5527. [Google Scholar] [CrossRef]
- Moore, R.C.; Inan, U.S.; Bell, T.F.; Kennedy, E.J. ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼4400 km. J. Geophys. Res. Space Phys. 2007, 112, A05309. [Google Scholar] [CrossRef] [Green Version]
- Stubbe, P.; Kopka, H.; Rietveld, M.; Frey, A.; Høeg, P.; Kohl, H.; Holt, O. Ionospheric modification experiments with the Tromsø heating facility. J. Atmos. Solar-Terr. Phys. 1985, 47, 1151–1163. [Google Scholar] [CrossRef]
- Barr, R.; Stubbe, P. ELF and VLF wave generation by HF heating: A comparison of AM and CW techniques. J. Atmos. Solar-Terr. Phys. 1997, 59, 2265–2279. [Google Scholar] [CrossRef]
- Rietveld, M.; Kopka, H.; Stubbe, P. D-region characteristics deduced from pulsed ionospheric heating under auroral electrojet conditions. J. Atmos. Solar-Terr. Phys. 1986, 48, 311–326. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Chang, C.L.; Vitello, P.; Drobot, A. On the efficiency of ionospheric ELF generation. Radio Sci. 1990, 25, 1311–1320. [Google Scholar] [CrossRef]
- Larchenko, A.V.; Blagoveshchenskaya, N.F.; Pilgaev, S.V.; Beketova, E.B.; Fedorenko, Y.V. Relationship Between the Polar Electrojet Dynamics and the Amplitude of ELF/VLF Signal from the Ionospheric Source in the Modulated Ionospheric Heating Experiment. Radiophys. Quantum Electron. 2019, 62, 385–394. [Google Scholar] [CrossRef]
- Yang, J.T.; Wang, J.G.; Li, Q.L.; Che, H.Q.; Hao, S.J. Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations. Plasma Sci. Technol. 2019, 21, 075301. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Sharma, A.S.; Chang, C.L. On the efficient operation of a plasma ELF antenna driven by modulation of ionospheric currents. Comments Plasma Phys. Controlled Fusion 1989, 13, 1–17. [Google Scholar]
- Barr, R.; Stubbe, P.; Rietveld, M.T. ELF wave generation in the ionosphere using pulse modulated HF heating: Initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 1999, 17, 759–769. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Golkowski, M.A. Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere. Geophys. Res. Lett. 2008, 35, L12101. [Google Scholar] [CrossRef]
- Moore, R.C.; Rietveld, M.T. Comment on “Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere”. Geophys. Res. Lett. 2009, 36, L04101. [Google Scholar] [CrossRef]
- Barr, R.; Rietveld, M.T.; Stubbe, P.; Kopka, H. Ionospheric heater beam scanning: A realistic model of this mobile source of ELF/VLF radiation. Radio Sci. 1988, 23, 379–388. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Gołkowski, M. Reply to comment by R. C. Moore and M. T. Rietveld on “Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere”. Geophys. Res. Lett. 2009, 36, L04102. [Google Scholar] [CrossRef] [Green Version]
- Barr, R.; Rietveld, M.T.; Stubbe, P.; Kopka, H. Ionospheric heater beam scanning: A mobile source of ELF radiation. Radio Sci. 1987, 22, 1073–1083. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Gołkowski, M.; McCarrick, M.J. ELF/VLF wave generation via ionospheric HF heating: Experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. 2010, 115, A02302. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Gołkowski, M.; Lehtinen, N.G. On the generation of ELF/VLF waves for long-distance propagation via steerable HF heating of the lower ionosphere. J. Geophys. Res. Space Phys. 2010, 115, A07322. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.; Moore, R.C. Optimization of VLF/ELF Wave Generation using Beam Painting. In AGU Fall Meeting Abstracts; AGUFM: New Orleans, LA, USA, 2017. [Google Scholar]
- Milikh, G.M.; Papadopoulos, K. Enhanced ionospheric ELF/VLF generation efficiency by multiple timescale modulated heating. Geophys. Res. Lett. 2007, 34, L20804. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.C.; Agrawal, D. ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere. J. Geophys. Res. Space Phys. 2011, 116, L04217. [Google Scholar] [CrossRef]
- Agrawal, D.; Moore, R.C. Dual-beam ELF wave generation as a function of power, frequency, modulation waveform, and receiver location. J. Geophys. Res. Space Phys. 2012, 117, A12305. [Google Scholar] [CrossRef] [Green Version]
- Gołkowski, M.; Cohen, M.B.; Moore, R.C. Modulation of auroral electrojet currents using dual modulated HF beams with ELF phase offset, a potential D-region ionospheric diagnostic. J. Geophys. Res. Space Phys. 2013, 118, 2350–2358. [Google Scholar] [CrossRef]
- Maxworth, A.S.; Gołkowski, M.; Cohen, M.B.; Moore, R.C.; Chorsi, H.T.; Gedney, S.D.; Jacobs, R. Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation. Radio Sci. 2015, 50, 1008–1026. [Google Scholar] [CrossRef]
- Gołkowski, M.; Inan, U.S.; Cohen, M.B. Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater. Geophys. Res. Lett. 2009, 36, L15103. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, J.; Wong, A.Y.; Song, B.; Pau, J.; McCarrick, M.; Sentman, D. Comparison of ELF/VLF generation modes in the ionosphere by the HIPAS heater array. Radio Sci. 1996, 31, 211–226. [Google Scholar] [CrossRef]
- Kuo, S.; Snyder, A.; Chang, C.-L. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves. Phys. Plasmas 2010, 17, 082904. [Google Scholar] [CrossRef]
- Kuo, S.; Snyder, A.; Kossey, P.; Chang, C.-L.; Labenski, J. Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. Space Phys. 2012, 117, A03318. [Google Scholar] [CrossRef]
- Kuo, S.; Snyder, A.; Kossey, P.; Chang, C.-L.; Labenski, J. VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 2011, 38, L10608. [Google Scholar] [CrossRef]
- Jin, G.; Spasojevic, M.; Cohen, M.B.; Inan, U.S.; Lehtinen, N.G. The relationship between geophysical conditions and ELF amplitude in modulated heating experiments at HAARP: Modeling and experimental results. J. Geophys. Res. 2011, 116, A07310. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.C.; Fujimaru, S.; Cohen, M.; Gołkowski, M.; McCarrick, M.J. On the altitude of the ELF/VLF source region generated during “beat-wave” HF heating experiments. Geophys. Res. Lett. 2012, 39, L18101. [Google Scholar] [CrossRef]
- Fujimaru, S.; Moore, R.C. Analysis of time-of-arrival observations performed during ELF/VLF wave generation experiments at HAARP. Radio Sci. 2011, 46, RS0M03. [Google Scholar] [CrossRef]
- Tereshchenko, E.D.; Shumilov, O.I.; Kasatkina, E.A.; Gomonov, A.D. Features of amplitude and Doppler frequency variation of ELF/VLF waves generated by “beat-wave” HF heating at high latitudes. Geophys. Res. Lett. 2014, 41, 4442–4448. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhan, J.; Wu, Z.S.; Kong, P. Numerical simulations of ELF/VLF wave generated by modulated beat-wave ionospheric heating in high latitude regions. Prog. Electromagn. Res. 2016, 50, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Rietveld, M.; Wu, J.; Ma, G.; Hu, Y.; Wu, J.; Li, Q. Polarization analysis of ELF/VLF waves generated by beating of two HF waves in the polar ionosphere. J. Atmos. Solar-Terr. Phys. 2019, 196, 105133. [Google Scholar] [CrossRef]
- Ma, G.; Guo, L.; Yang, J.; Lv, L.; Chen, J.; Xu, T.; Hao, S.; Wu, J. Effects of variations of geomagnetic field on VLF waves induced by beating of two HF waves. Adv. Space Res. 2019, 63, 2126–2131. [Google Scholar] [CrossRef]
- Fedorenko, Y.; Tereshchenko, E.; Pilgaev, S.; Grigoryev, V.; Blagoveshchenskaya, N. Polarization of ELF waves generated during “beat-wave” heating experiment near cutoff frequency of the Earth-ionosphere waveguide. Radio Sci. 2014, 49, 1254–1264. [Google Scholar] [CrossRef]
- Kuo, S.; Cheng, W.T.; Pradipta, R.; Lee, M.C.; Snyder, A. Observation and theory of whistler wave generation by high-power HF waves. J. Geophys. Res. Space Phys. 2013, 118, 1331–1338. [Google Scholar] [CrossRef]
- Rooker, L.A.; Lee, M.C.; Pradipta, R.; Watkins, B.J. Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska. Phys. Scr. 2013, T155, 014029. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Wang, J.; Hao, S.; Ma, G. The polarization characteristics of ELF/VLF waves generated via HF heating experiments of the ionosphere by EISCAT. Phys. Plasmas 2018, 25, 092902. [Google Scholar] [CrossRef]
- Yang, J.T.; Wang, J.G.; Li, Q.L.; Wu, J.; Che, H.Q.; Ma, G.L.; Hao, S.J. Experimental comparisons between AM and BW modulation heating excitation of ELF/VLF waves at EISCAT. Phys. Plasmas 2019, 26, 082901. [Google Scholar] [CrossRef]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas; Pergamon: New York, NY, USA, 1964; pp. 456–458. [Google Scholar]
- Kotik, D.S.; Ermakova, E.N. Resonances in the generation of electromagnetic signals due to the thermal cubic nonlinearity in the lower ionosphere. J. Atmos. Solar-Terr. Phys. 1998, 60, 1257–1259. [Google Scholar] [CrossRef]
- Barr, R. VLF wave generation using VLF heating and the cubic nonlinearity of the ionosphere. Geophys. Res. Lett. 1996, 23, 2165–2168. [Google Scholar] [CrossRef]
- Moore, R.C.; Fujimaru, S.; Kotovsky, D.A.; Gołkowski, M. Observations of Ionospheric ELF and VLF Wave Generation by Excitation of the Thermal Cubic Nonlinearity. Phys. Rev. Lett. 2013, 111, 235007. [Google Scholar] [CrossRef]
- Cohen, M.B.; Gołkowski, M. 100 days of ELF/VLF generation via HF heating with HAARP. J. Geophys. Res. Space Phys. 2013, 118, 6597–6607. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Chang, C.; Labenski, J.; Wallace, T. First demonstration of HF-driven ionospheric currents. Geophys. Res. Lett. 2011, 38, L20107. [Google Scholar] [CrossRef]
- Barr, R. VLF wave generation using VLF heating: A pointer to a new technique for ELF wave production? IEE Proc. Microw. Antennas Propag. 1997, 144, 153–160. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Gumerov, N.; Shao, X.; Doxas, I.; Chang, C. HF-driven currents in the polar ionosphere. Geophys. Res. Lett. 2011, 38, L12103. [Google Scholar] [CrossRef]
- Eliasson, B.; Chang, C.-L.; Papadopoulos, K. Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. Space Phys. 2012, 117, A10320. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.S.; Eliasson, B.; Shao, X.; Papadopoulos, K. Generation of ELF waves during HF heating of the ionosphere at midlatitudes. Radio Sci. 2016, 51, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhou, C.; Shi, R.; Ni, B.; Zhao, Z.; Zhang, Y. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes. Ann. Geophys. 2016, 34, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L. Artificial excitation of ELF waves with frequency of Schumann resonance. J. Atmos. Solar-Terr. Phys. 2014, 119, 110–115. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Yeoman, T.K.; Rietveld, M.T.; Ivanova, I.M.; Baddeley, L.J. Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett. 2011, 38, L08802. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Yeoman, T.K.; Rietveld, M.T.; Häggström, I.; Ivanova, I.M. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Solar-Terr. Phys. 2013, 105-106, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wang, X.; Liu, M.; Ni, B.; Zhao, Z. Nonlinear processes in ionosphere: Report on the mechanisms of ionospheric heating by the powerful radio waves. Chin. J. Geophys. 2018, 61, 4323–4336. [Google Scholar] [CrossRef]
- Kuo, S.P.; Lee, M.C. On the VLF wave generation by beating of two HF heaters. Phys. Plasmas 2017, 24, 022902. [Google Scholar] [CrossRef]
- Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Surjalal Sharma, A.; Papadopoulos, D. Generation of polarized shear Alfvén waves by a rotating magnetic field source. Phys. Plasmas 2009, 16, 092106. [Google Scholar] [CrossRef] [Green Version]
- Karavaev, A.V.; Gumerov, N.A.; Papadopoulos, K.; Shao, X.; Sharma, A.S.; Gekelman, W.; Gigliotti, A.; Pribyl, P.; Vincena, S. Generation of whistler waves by a rotating magnetic field source. Phys. Plasmas 2010, 17, 012102. [Google Scholar] [CrossRef] [Green Version]
- Karavaev, A.V.; Gumerov, N.A.; Papadopoulos, K.; Shao, X.; Sharma, A.S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S. Generation of shear Alfvén waves by a rotating magnetic field source: Three-dimensional simulations. Phys. Plasmas 2011, 18, 032113. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.J.; Pribyl, P.; Gekelman, W.; Lucky, Z. An RF amplifier for ICRF studies in the LAPD. In Proceedings of the 21st Topical Conference on Radiofrequency Power in Plasmas, Los Angeles, CA, USA, 27–29 April 2015. [Google Scholar] [CrossRef] [Green Version]
- Gekelman, W.; Pribyl, P.; Lucky, Z.; Drandell, M.; Leneman, D.; Maggs, J.; Vincena, S.; Van Compernolle, B.; Tripathi, S.K.P.; Morales, G.; et al. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics. Rev. Sci. Instrum. 2016, 87, 025105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Soria-Santacruz, M.; Bautista, G.; Gettliffe, G.V.; Martinez-Sanchez, M.; Miller, D.W. Design of a space-borne antenna for controlled removal of energetic Van Allen belt protons. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014. [Google Scholar] [CrossRef]
- Gołkowski, M.; Inan, U.S.; Gibby, A.R.; Cohen, M.B. Magnetospheric amplifification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater. J. Geophys. Res. 2008, 113, A10201. [Google Scholar] [CrossRef] [Green Version]
- Streltsov, A.V.; Gołkowski, M.; Inan, U.S.; Papadopoulos, K.D. Propagation of whistler-mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 2010, 115, A09209. [Google Scholar] [CrossRef] [Green Version]
- Mogilevsky, M.M.; Zelenyi, L.M.; Demekhov, A.G.; Petrukovich, A.A.; Shklyar, D.R. RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere. Geophys. Monogr. Ser. 2012, 199, 117–126. [Google Scholar] [CrossRef]
- Demekhov, A.G.; Trakhtengerts, V.Y.; Mogilevsky, M.M.; Zelenyi, L.M. Current problems in studies of magnetospheric cyclotron masers and new space project “RESONANCE”. Adv. Space Res. 2003, 32, 355–374. [Google Scholar]
- Demekhov, A.G.; Titova, E.E.; Maninnen, J.; Pasmanik, D.L.; Lubchich, A.A.; Santolík, O.; Larchenko, A.V.; Nikitenko, A.S.; Turunen, T. Localization of the source of quasiperiodic VLF emissions in the magnetosphere by using simultaneous ground and space observations: A case study. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027776. [Google Scholar] [CrossRef]
- Mathews, J.D. A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 2013, 4, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.X.; Gu, X.D.; Yang, K.X.; Li, G.S.; Ni, B.B.; Yi, J.; Chen, L.; Zhao, F.T.; Zhao, Z.Y.; Wang, Q.; et al. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method. Earth Planet. Phys. 2020, 4, 120–130. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Ni, B.; Zhao, Z.; Gu, X.; Zhou, C.; Wang, F. Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res. 2016, 57, 1871–1880. [Google Scholar] [CrossRef]
Heater | Geographic Coordinates | Basic Information |
---|---|---|
HAARP | 62.39° N, 145.15° W | The most powerful and sophisticated heater in the world. The primary transmitter contains a phased array of 180 HF crossed dipole antennas and radiating electromagnetic waves in the frequency range of 2.8 to 10 MHz, with a net power of 3.6 MW. The HF beams can be scanned between elevation angles of 30° and the zenith. |
EISCAT | 69.6° N, 19.2° E | The heater contains 12 vacuum tube transmitters of 100 kW (actually 80 kW because of ageing of the facility) radiating electromagnetic waves in the frequency range of 3.85 to 8 MHz. Each transmitter can be connected to one of three arrays. Array-1 (destroyed by a storm in 1985 and rebuilt in 1990) covers 5.4–8.0 MHz and the HF beams can be steered about ±20° from vertical, with the exact angle depending on the frequency. Array-2 and Array-3 cover 3.85–5.6 and 5.4–8.0 MHz, respectively, allowing steering of the HF beams in the north-south plane out to about ±30° from vertical. |
SURA | 56.13° N, 46.1° E | The heater contains three HF broadcast transmitters. Each transmitter has a maximum output power of 250 kW, and is connected to a sub-array containing 4 × 12 crossed dipoles. It allows radiating electromagnetic waves from 4.3 to 9.5 MHz. The HF beam can be steered in a geomagnetic meridian plane within ±40° from the vertical. |
Modulation Method | Suitable Modulation Frequency Range |
---|---|
Amplitude Modulation | ELF and lower VLF |
Beam Painting | Lower ELF |
Geometric Modulation | >3 kHz VLF |
Preheating | ELF and lower VLF (same as AM, but more effective) |
Dual-Beam HF Modulation | ELF and lower VLF (same as AM, but less effective) |
Beat Wave Modulation | VLF |
Thermal Cubic Non-Linearity | 10~16 kHz VLF |
Ionospheric Current Drive | ULF |
LH-to-Whistler Mode Conversion | 7–10 and 15–19 kHz VLF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Fang, H.; Honary, F. The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating. Universe 2021, 7, 29. https://doi.org/10.3390/universe7020029
Guo Z, Fang H, Honary F. The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating. Universe. 2021; 7(2):29. https://doi.org/10.3390/universe7020029
Chicago/Turabian StyleGuo, Zhe, Hanxian Fang, and Farideh Honary. 2021. "The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating" Universe 7, no. 2: 29. https://doi.org/10.3390/universe7020029
APA StyleGuo, Z., Fang, H., & Honary, F. (2021). The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating. Universe, 7(2), 29. https://doi.org/10.3390/universe7020029