To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity
Abstract
:1. Introduction
2. The Conservative Landscape
2.1. From Special to General Relativity
2.2. Diffeomorphism Invariance
2.3. The Meaning of the Term “Energy-Momentum Conservation” in the Presence of a Gravitational Field
3. Rastall Gravity
4. Brans–Dicke Theory in the Einstein Frame
5. Gravity Theories from the Standard Model Extension
5.1. Spacetime-Dependent Cosmological Constant
5.2. Chern–Simons Gravity
6. Emergent Gravity Theories Breaking General Covariance
7. Action Dependent Lagrangian Theories
8. Nonminimal Curvature–Matter Coupling
9. Theories
10. Nonconservative Traceless Gravity
11. Energy Conditions When .
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brading, K. A Note on General Relativity, Energy Conservation, and Noether’s Theorems. Einstein Stud. 2005, 11, 125–135. [Google Scholar]
- Goldberg, J.N. Conservation Laws in General Relativity. Phys. Rev. 1958, 111, 315–320. [Google Scholar] [CrossRef]
- Komar, A. Covariant conservation laws in general relativity. Phys. Rev. 1959, 113, 934–936. [Google Scholar] [CrossRef]
- Bergmann, P.G. Conservation Laws in General Relativity as the Generators of Coordinate Transformations. Phys. Rev. 1958, 112, 287–289. [Google Scholar] [CrossRef]
- Bondi, H. Conservation and Non-Conservation in General Relativity. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1990, 427, 249–258. [Google Scholar]
- Bak, D.; Cangemi, D.; Jackiw, R. Energy momentum conservation in general relativity. Phys. Rev. D 1995, 49, 5173–5181, Erratum in 1995, 52, 3753. [Google Scholar] [CrossRef] [Green Version]
- Rastall, P. Generalization of the einstein theory. Phys. Rev. D 1972, 6, 3357–3359. [Google Scholar] [CrossRef]
- Brans, C.H.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Magnano, G.; Sokolowski, L.M. Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field. Phys. Rev. D 1994, 50, 5039. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V.; Gunzig, E. Einstein frame or Jordan frame? Int. J. Theory Phys. 1999, 38, 217–225. [Google Scholar] [CrossRef]
- Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [Google Scholar] [CrossRef] [Green Version]
- Anber, M.M.; Aydemir, U.; Donoghue, J.F. Breaking Diffeomorphism Invariance and Tests for the Emergence of Gravity. Phys. Rev. D 2010, 81, 084059. [Google Scholar] [CrossRef] [Green Version]
- Lazo, M.J.; Paiva, J.; Amaral, J.T.S.; Frederico, G.S.F. Action principle for action-dependent Lagrangians toward nonconservative gravity: Accelerating universe without dark energy. Phys. Rev. D 2017, 95, 101501. [Google Scholar] [CrossRef] [Green Version]
- Herglotz, G. Berührungstransformationen; University of Göttingen: Göttingen, Germany, 1930. [Google Scholar]
- Koivisto, T. A note on covariant conservation of energy–momentum in modified gravities. Class. Quant. Grav. 2006, 23, 4289. [Google Scholar] [CrossRef]
- Tian, D.W.; Booth, I. Lessons from f (R, Rc2, Rm2, Lm) gravity: Smooth Gauss-Bonnet limit, energy-momentum conservation, and nonminimal coupling. Phys. Rev. D 2014, 90, 024059. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, F.G.; Cruz-Dombriz, A.D.; Houndjo, M.J.S.; Rodrigues, M.E.; Sáez-Gómez, D. Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D 2013, 87, 103526, Erratum in 2013, 87, 129905. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.B.; Carlson, E.D. Reexamining f(R,T) gravity. Phys. Rev. D 2019, 100, 064059. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, F. A New Model for the Expanding Universe. Mon. Not. R. Astron. Soc. 1948, 108, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Bondi, H.; Gold, T. The Steady-State Theory of the Expanding Universe. Mon. Not. R. Astron. Soc. 1948, 108, 252–270. [Google Scholar] [CrossRef]
- Fritzsch, H.; Sola, J. Matter Non-conservation in the Universe and Dynamical Dark Energy. Class. Quant. Grav. 2012, 29, 215002. [Google Scholar] [CrossRef] [Green Version]
- Pigozzo, C.; Carneiro, S.; Alcaniz, J.S.; Borges, H.A.; Fabris, J.C. Evidence for cosmological particle creation? JCAP 2016, 5, 022. [Google Scholar] [CrossRef] [Green Version]
- Koutsoumbas, G.; Ntrekis, K.; Papantonopoulos, E. Gravitational Particle Production in Gravity Theories with Non-minimal Derivative Couplings. JCAP 2013, 8, 027. [Google Scholar] [CrossRef] [Green Version]
- Ema, Y.; Jinno, R.; Mukaida, K.; Nakayama, K. Particle Production after Inflation with Non-minimal Derivative Coupling to Gravity. JCAP 2015, 10, 020. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Paolella, M. Bounding f(R) gravity by particle production rate. Int. J. Mod. Phys. D 2016, 25, 1630010. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Guo, W.D.; Yang, K.; Liu, Y.X. Scalar particle production in a simple Horndeski theory. Phys. Rev. D 2018, 97, 083524. [Google Scholar] [CrossRef] [Green Version]
- Maudlin, T.; Okon, E.; Sudarsky, D. On the Status of Conservation Laws in Physics: Implications for Semiclassical Gravity. Stud. Hist. Philos. Sci. B 2020, 69, 67–81. [Google Scholar] [CrossRef]
- Galley, C.R. Classical Mechanics of Nonconservative Systems. Phys. Rev. Lett. 2013, 110, 174301. [Google Scholar] [CrossRef] [Green Version]
- Forger, M.; Romer, H. Currents and the energy-momentum tensor in classical field theory: A Fresh look at an old problem. Ann. Phys. 2004, 309, 306–389. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Carroll, S. Spacetime and Geometry: An Introduction to General Relativity; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Wald, R. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Noether, E. Invariant variation problems. Gott. Nachr. 1918, 1918, 235–257, Reprint in Transp. Theory Statist. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Puetzfeld, D. Conservation laws in gravity: A unified framework. Phys. Rev. D 2014, 90, 024004. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Bertlemann, R.A. Anomalies in Quantum Field Theory; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Smalley, L.L. Variational principle for a prototype Rastall theory of gravitation. Il Nuovo Cimento B 1984, 80, 42–48. [Google Scholar] [CrossRef]
- Santos, R.V.D.; Nogales, J.A.C. Cosmology from a Lagrangian formulation for Rastall’s theory. arXiv 2017, arXiv:1701.08203. [Google Scholar]
- Moraes, W.A.G.D.; Santos, A.F. Lagrangian formalism for Rastall theory of gravity and Gödel-type universe. Gen. Relativ. Gravit. 2019, 51, 167. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.S.; Pucheu, M.L.; Romero, C.; Formiga, J.B. From Brans-Dicke gravity to a geometrical scalar-tensor theory. Phys. Rev. D 2014, 89, 064047. [Google Scholar] [CrossRef] [Green Version]
- Fabris, J.C.; Piattella, O.F.; Rodrigues, D.C.; Batista, C.E.M.; Daouda, M.H. Rastall cosmology. Int. J. Mod. Phys. Conf. Ser. 2012, 18, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Batista, C.E.M.; Daouda, M.H.; Fabris, J.C.; Piattella, O.F.; Rodrigues, D.C. Rastall Cosmology and the—Lambda CDM Model. Phys. Rev. D 2012, 85, 084008. [Google Scholar] [CrossRef] [Green Version]
- Akarsu, Ö.; Katırcı, N.; Kumar, S.; Nunes, R.C.; Öztürk, B.; Sharma, S. Rastall gravity extension of the standard ΛCDM model: Theoretical features and observational constraints. Eur. Phys. J. C 2020, 80, 1050. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Moradpour, H.; Darabi, F. Black Hole Solutions in Rastall Theory. Can. J. Phys. 2017, 95, 1253–1256. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, S.G. Rotating black hole in Rastall theory. Eur. Phys. J. C 2018, 78, 750. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.M.; Velten, H.E.S.; Fabris, J.C.; Casarini, L. Neutron Stars in Rastall Gravity. Phys. Rev. D 2015, 92, 044020. [Google Scholar] [CrossRef] [Green Version]
- Smalley, L.L. Modified Brans-Dicke gravitational theory with nonzero divergence of the energy-momentum tensor. Phys. Rev. D 1974, 9, 1635. [Google Scholar] [CrossRef]
- Lindblom, L.; Hiscock, W.A. Criticism of some non-conservative gravitational theories. J. Phys. A Math. Gen. 1982, 15, 1827–1830. [Google Scholar] [CrossRef]
- Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C. Einstein and Rastall Theories of Gravitation in Comparison. Eur. Phys. J. C 2018, 78, 25. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Rastall gravity is equivalent to Einstein gravity. Phys. Lett. B 2018, 782, 83–86. [Google Scholar] [CrossRef]
- Faraoni, V.; Gunzig, E.; Nardone, P. Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosm. Phys. 1999, 20, 121. [Google Scholar]
- Caramês, T.R.P.; Daouda, M.H.; Fabris, J.C.; Oliveira, A.M.; Piattella, O.F.; Strokov, V. The brans-dicke-rastall theory. Eur. Phys. J. C 2014, 74, 3145. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecky, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecky, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Lehnert, R. Stability, causality, and Lorentz and CPT violation. Phys. Rev. D 2001, 63, 065008. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Ann. Phys. 1982, 140, 372. [Google Scholar] [CrossRef]
- Deser, S.; Jackiw, R.; Templeton, S. Three-dimensional massive gauge theories. Phys. Rev. Lett. 1982, 48, 975. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R.; Pi, S.-Y. Chern-Simons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R. CPT and Lorentz Symmetry TV; Kostelecky, V.A., Ed.; World Scientific: Singapore, 2008. [Google Scholar]
- Alexander, S.; Yunes, N. Chern-Simons modified general relativity. Phys. Rep. 2009, 480, 1. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.L.; Erickcek, A.L.; Caldwell, R.R.; Kamionkowski, M. Effects of Chern-Simons gravity on bodies orbiting the Earth. Phys. Rev. D 2008, 77, 024015. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense—Thirring effect. Nature 2004, 431, 958. [Google Scholar] [CrossRef]
- Will, C.M. Covariant calculation of general relativistic effects in an orbiting gyroscope experiment. Phys. Rev. D 2003, 67, 062003. [Google Scholar] [CrossRef] [Green Version]
- Fabris, J.C.; Velten, H.; Caramês, T.R.P.; Lazo, M.J.; Frederico, G.S.F. Cosmology from a new nonconservative gravity. Int. J. Mod. Phys. D 2018, 27, 1841006. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, W. Bulk viscous cosmology. Phys. Rev. D 1996, 53, 5483. [Google Scholar] [CrossRef]
- Velten, H.; Schwarz, D.J.; Cosmol, J. Constraints on dissipative unified dark matter. Astropart. Phys. 2011, 9, 16. [Google Scholar] [CrossRef]
- Velten, H.; Schwarz, D. Dissipation of dark matter. Phys. Rev. D 2012, 86, 083501. [Google Scholar] [CrossRef] [Green Version]
- Caramês, T.R.P.; Velten, H.; Fabris, J.C.; Lazo, M.J. Dark energy with zero pressure: Accelerated expansion and large scale structure in action-dependent Lagrangian theories. Phys. Rev. D 2018, 98, 103501. [Google Scholar] [CrossRef] [Green Version]
- Nesseris, S.; Pantazis, G.; Perivolaropoulos, L. Tension and constraints on modified gravity parametrizations of Geff(z) from growth rate and Planck data. Phys. Rev. D 2017, 96, 023542. [Google Scholar] [CrossRef] [Green Version]
- Bragança, E.A.F.; Thiago, R.P.; Caramês, J.C.F.; de Pádua Santos, A. Some effects of non-conservative gravity on cosmic string configurations. Eur. Phys. J. C 2019, 79, 162. [Google Scholar] [CrossRef]
- Fabris, J.C.; Caramês, T.R.P.; da Silva, J.M.H. Braneworld gravity within non-conservative gravitational theory. Eur. Phys. J. C 2018, 78, 402. [Google Scholar] [CrossRef] [Green Version]
- Fabris, J.C.; Velten, H.; Wojnar, A. Existence of static spherically-symmetric objects in action-dependent Lagrangian theories. Phys. Rev. D 2019, 99, 124031. [Google Scholar] [CrossRef] [Green Version]
- Ayuso, I.; Lobo, F.S.N.; Mimoso, J.P. Wormhole geometries induced by action-dependent Lagrangian theories. arXiv 2020, arXiv:2012.00047. [Google Scholar]
- Harko, T.; Lobo, F.S.N. f(R,Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [Google Scholar] [CrossRef]
- YObukhov, N.; Puetzfeld, D. Conservation laws in gravitational theories with general nonminimal coupling. Phys. Rev. D 2013, 87, 081502. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Mimoso, J.P.; Pavón, D. Gravitational induced particle production through a nonminimal curvature-matter coupling. Eur. Phys. J. C 2015, 75, 386. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.P.L.; Avelino, P.P. Particle creation and decay in nonminimally coupled models of gravity. Phys. Rev. D 2019, 99, 064027. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Xu, X.; Wang, B.; Gong, Y. Dynamical analysis of modified gravity with nonminimal gravitational coupling to matter. Phys. Rev. D 2016, 93, 103505. [Google Scholar] [CrossRef] [Green Version]
- Velten, H.; Caramês, T.R.P. Cosmological inviability of f(R,T) gravity. Phys. Rev. D 2017, 95, 123536. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Correa, R.A.C.; Ribeiro, G. Evading the non-continuity equation in the f(R,T) cosmology. Eur. Phys. J. C 2018, 78, 192. [Google Scholar] [CrossRef]
- Fisher, S.B.; Carlson, E.D. Reply to “Comment on ‘Reexamining f(R,T) gravity’”. Phys. Rev. D 2020, 101, 108502. [Google Scholar] [CrossRef]
- Harko, T.; Moraes, P.H.R.S. Comment on “Reexamining f(R,T) gravity”. Phys. Rev. D 2020, 101, 108501. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. The f(R,Tϕ) gravity models with conservation of energy-momentum tensor. Eur. Phys. J. C 2018, 78, 564. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Brandenberger, R.H.; Cai, Y.; Chen, P. Cosmological perturbations in unimodular gravity. JCAP 2014, 1409, 021. [Google Scholar] [CrossRef] [Green Version]
- Daouda, M.; Fabris, J.C.; Oliveira, A.M.; Smirnov, F.; Velten, H.E.S. Nonconservative traceless type gravity. Int. J. Mod. Phys. D 2019, 28, 1950175. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Barcelo, C. Energy Conditions and Their Cosmological Implications; World Scientific: Singapore, 2000. [Google Scholar]
- Calogero, S.; Velten, H. Cosmology with matter diffusion. JCAP 2013, 11, 025. [Google Scholar] [CrossRef] [Green Version]
- Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 2017, 118, 021102. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.; Sudarsky, D.; Wilson-Ewing, E. Resolving the H0 tension with diffusion. Gen. Relativ. Gravit. 2021, 53, 7. [Google Scholar] [CrossRef]
- Banerjee, R.; Gangopadhyay, S.; Kulkarni, S. Nonconservation of energy-momentum tensor in classical Liouville theory. EPL 2010, 89, 11003. [Google Scholar] [CrossRef] [Green Version]
- Maulana, H.; Sulaksono, A. Impact of energy-momentum nonconservation on radial pulsations of strange stars. Phys. Rev. D 2019, 100, 124014. [Google Scholar] [CrossRef]
- Lobato, R.V.; Carvalho, G.A.; Martins, A.G.; Moraes, P.H.R.S. Energy nonconservation as a link between f(R,T) gravity and noncommutative quantum theory. Eur. Phys. J. Plus 2019, 134, 132. [Google Scholar] [CrossRef]
- Pan, S.; de Haro, J.; Paliathanasis, A.; Slagter, R.J. Evolution and Dynamics of a Matter creation model. Mon. Not. R. Astron. Soc. 2016, 460, 1445–1456. [Google Scholar] [CrossRef]
1. | Although we consider throughout this work, particularly in this section we show c explicitly, in order to match the Ref. [37] that is used in the present discussion. |
2. | With a minus sign with respect to (11). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velten, H.; Caramês, T.R.P. To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity. Universe 2021, 7, 38. https://doi.org/10.3390/universe7020038
Velten H, Caramês TRP. To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity. Universe. 2021; 7(2):38. https://doi.org/10.3390/universe7020038
Chicago/Turabian StyleVelten, Hermano, and Thiago R. P. Caramês. 2021. "To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity" Universe 7, no. 2: 38. https://doi.org/10.3390/universe7020038
APA StyleVelten, H., & Caramês, T. R. P. (2021). To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity. Universe, 7(2), 38. https://doi.org/10.3390/universe7020038