Positronia’ Clouds in Universe
Abstract
:1. Introduction
2. Sources of Positrons and Positronia
3. Ultraperipheral Nuclear Collisions at NICA Collider
4. From Colliders to Astrophysics
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegert, T.; Diehl, R.; Khachatryan, G.; Krause, M.G.; Guglielmetti, F.; Greiner, J.; Strong, A.W.; Zhang, X. Gamma-ray spectroscopy of Positron Annihilation in the Milky Way. A&A 2016, 586, A84. [Google Scholar]
- Dwyer, J.R.; Smith, D.M.; Hazelton, B.J.; Grefenstette, B.W.; Kelley, N.A.; Lowell, A.W.; Schaal, M.M.; Rassoul, H.K. Positron clouds within thunderstorms. J. Plasma Phys. 2015, 81, 475810405. [Google Scholar] [CrossRef] [Green Version]
- Klein, S. Two-photon production of dilepton pairs in peripheral heavy ion collisions. Phys. Rev. C 2018, 97, 054903. [Google Scholar] [CrossRef] [Green Version]
- Chubenko, A.P.; Antonova, V.P.; Kryukov, S.Y.; Piskal, V.V.; Ptitsyn, M.O.; Shepetov, A.L.; Vildanova, L.I.; Zybin, K.P.; Gurevich, A.V. Intense X-ray emission bursts during thunderstorms. Phys. Lett. A 2000, 275, 90–100. [Google Scholar] [CrossRef]
- Chubenko, A.P.; Karashtin, A.N.; Ryabov, V.A.; Shepetov, A.L.; Antonova, V.P.; Kryukov, S.V.; Mitko, G.G.; Naumov, A.S.; Pavljuchenko, L.V.; Ptitsyn, M.O.; et al. Energy spectrum of lightning gamma emission. Phys. Lett. A 2009, 373, 2953–2958. [Google Scholar] [CrossRef]
- Chilingarian, A.; Mailyan, B.; Vanyan, L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmos. Res. 2012, 114–115, 1–16. [Google Scholar] [CrossRef]
- Dremin, I.M. Excess of soft dielectrons and photons. Universe 2020, 6, 94. [Google Scholar] [CrossRef]
- Dremin, I.M.; Gevorkyan, S.R.; Madigozhin, D.T. Enhancement of low-mass dileptons in ultraperipheral collisions. arXiv 2020, arXiv:2008.13184. [Google Scholar]
- Diehl, R.; Krause, M.G.; Kretschmer, K.; Lang, M. Steady-state nucleosynthesis throughout the Galaxy. arXiv 2020, arXiv:2011.06369. [Google Scholar]
- Takhistov, V. Positrons from Primordial Black Hole Microquasars and Gamma-ray Bursts. Phys. Lett. B 2019, 789, 538–544. [Google Scholar] [CrossRef]
- Istomin, Y.N.; Chernyshov, D.O.; Sob’yanin, D.N. Extinct radio pulsars as a source of subrelativistic positrons. Mon. Not. R. Astron. Soc. 2020, 498, 2089–2094. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A. Annihilation Emission from the Galactic Black Hole. Astrophys. J. 2006, 645, 1138. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Ding, Y.; Yang, X.; Zhou, Y. Constraints on a mixed model of dark matter particles and primordial black holes from the Galactic 511 keV line. arXiv 2020, arXiv:2007.11804. [Google Scholar]
- Farzan, Y.; Rajaee, M. Pico-charged particles explaining 511 keV line and XENON1T signal. arXiv 2020, arXiv:2007.14421. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. On the production of electrons and positrons by a collision of two particles. Phys. Z. Sowjetunion 1934, 6, 244. [Google Scholar]
- Froissart, M. Asymptotic Behavior and Subtractions in the Mandelstam Representation. Phys. Rev. 1961, 123, 1053–1057. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral vs ordinary nuclear interactions. Universe 2020, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Budnev, V.M.; Ginzburg, I.F.; Meledin, G.V.; Serbo, V.G. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. C 1975, 15, 181–282. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral nuclear interactions. Phys. Usp. 2020, 63, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Vysotsky, M.I.; Zhemchugov, E.V. Equivalent photons in proton-proton and ion-ion collisions at the Large Hadron Collider. Phys. Usp. 2019, 189, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Dremin, I.M. Thresholds of ultraperipheral processes. Int. J. Mod. Phys. A 2020, 35, 2050087. [Google Scholar] [CrossRef]
- Weizsäcker, C.F.V. Radiation emitted in collisions of very fast electrons. Z. Phys. 1934, 88, 612–625. [Google Scholar] [CrossRef]
- Williams, E.J. Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 1934, 45, 729–730. [Google Scholar] [CrossRef]
- Racah, G. Sulla Nascita di Coppie per Urti di Particelle Elettrizzate. Phys. Usp. 2020, 190, 811. [Google Scholar]
- Berestetsky, V.B.; Lifshitz, E.M.; Pitaevsky, L.P. Kvantovaya Electrodinamika; Fizmatlit: Moscow, Russia, 2001. [Google Scholar]
- Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Kvantovaya Mechanika, Nerelyativistskaya Teoriya. In Quantum Mechanics; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Sommerfeld, A. Atombau und Spectrallinien; F. Vieweg und Sohn: Brunswick, Germany, 1921. [Google Scholar]
- Gamow, G. Zur Quantentheorie des Atomkernes. Z. Phys. 1928, 51, 204–212. [Google Scholar] [CrossRef]
- Sommerfeld, A. Über die Beugung und Bremsung der Elektronen. Ann. Phys. (Leipz.) 1931, 403, 257–330. [Google Scholar] [CrossRef]
- Sakharov, A.D. Interaction of the electron and the positron in pair production. Zh. Eksp. Teor. Fiz. 1948, 18, 631–635. [Google Scholar]
- Baier, V.N.; Fadin, V.S. Coulomb interaction in the final state. Sov. Phys. JETP 1970, 30, 127. [Google Scholar]
- Iengo, R. Sommerfeld enhancement: General results from field theory diagrams. J. High Energy Phys. 2009, 5, 024. [Google Scholar] [CrossRef]
- Cassel, S. Sommerfeld factor for arbitrary partial wave processes. J. Phys. G 2010, 37, 105009. [Google Scholar] [CrossRef]
- Arbuzov, A.B.; Kopylova, T.V. On relativization of the Sommerfeld-Gamow-Sakharov factor. J. High Energy Phys. 2012, 4, 009. [Google Scholar] [CrossRef] [Green Version]
- Dremin, I.M. Geometry of ultraperipheral nuclear collisions. Int. J. Mod. Phys. A 2019, 34, 1950068. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dremin, I.M. Positronia’ Clouds in Universe. Universe 2021, 7, 42. https://doi.org/10.3390/universe7020042
Dremin IM. Positronia’ Clouds in Universe. Universe. 2021; 7(2):42. https://doi.org/10.3390/universe7020042
Chicago/Turabian StyleDremin, Igor M. 2021. "Positronia’ Clouds in Universe" Universe 7, no. 2: 42. https://doi.org/10.3390/universe7020042
APA StyleDremin, I. M. (2021). Positronia’ Clouds in Universe. Universe, 7(2), 42. https://doi.org/10.3390/universe7020042