Gravitoelectromagnetic Knot Fields
Abstract
:1. Introduction
2. GEM Formalism of Linearized Gravity
3. General Knot Fields in Linearized GEM
3.1. Knot Fields in Linearized GEM
3.2. Space-Time Geometry from GEM Knots
3.3. Knot Solutions in Static Gravitational Field
3.4. Energy-Momentum Pseudo-Tensor and Scalar Invariant of Static Fields
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mashhoon, B. Gravitational couplings of intrinsic spin. Class. Quant. Grav. 2000, 17, 2399–2410. [Google Scholar] [CrossRef] [Green Version]
- Kopeikin, S.; Mashhoon, B. Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary moving and spinning bodies. Phys. Rev. D 2002, 65, 064025. [Google Scholar] [CrossRef] [Green Version]
- Gemelli, G.; Bini, D.; de Felice, F. Gravitoelectromagnetism and algebraic properties of the Weyl tensor. Int. J. Mod. Phys. D 2002, 11, 223. [Google Scholar] [CrossRef]
- Filipe Costa, L.; Herdeiro, C.A.R. A Gravito-electromagnetic analogy based on tidal tensors. Phys. Rev. D 2008, 78, 024021. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Herdeiro, C.A.R. Reference Frames and the Physical Gravito-Electromagnetic Analogy. IAU Symp. 2010, 261, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natario, J. Gravito-electromagnetic analogies. Gen. Rel. Grav. 2014, 46, 1792. [Google Scholar] [CrossRef] [Green Version]
- Goulart, E.; Falciano, F.T. Formal analogies between gravitation and electrodynamics. Int. J. Mod. Phys. A 2009, 24, 4589–4605. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.; Montigny, M.; Khanna, F.C. On a Lagrangian formulation of gravitoelectromagnetism. Gen. Rel. Grav. 2010, 42, 2403–2420. [Google Scholar] [CrossRef]
- Ramos, J.; de Montigny, M.; Khanna, F.C. Abelian and non-Abelian Weyl gravitoelectromagnetism. Ann. Phys. 2020, 418, 168182. [Google Scholar] [CrossRef]
- Spaniol, E.P.; Belo, L.R.A.; Andrade, V.C. Teleparallel Gravitoelectromagnetism: The Role of Boosts in the Schwarzschild Geometry. Braz. J. Phys. 2014, 44, 811–816. [Google Scholar] [CrossRef]
- Ming, K.; Triyanta; Kosasih, J.S. Gravitoelectromagnetism in teleparallel equivalent of general relativity: A new alternative. Int. J. Mod. Phys. D 2017, 26, 1750092. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Levi Said, J.; Finch, A. Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f(T,B) Gravity with Observational Constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Duplij, S.; Di Grezia, E.; Esposito, G.; Kotvytskiy, A. Nonlinear constitutive equations for gravitoelectromagnetism. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450004. [Google Scholar] [CrossRef] [Green Version]
- Malekolkalami, B.; Farhoudi, M. Gravitomagnetism and Non-commutative Geometry. Int. J. Theor. Phys. 2014, 53, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Kansu, M.E.; Tanii, M.; Dem, S. Representation of electromagnetic and gravitoelectromagnetic Poynting theorems in higher dimensions. Turk. J. Phys. 2014, 38, 155–164. [Google Scholar] [CrossRef]
- Mashhoon, B.; Hehl, F.W. Nonlocal Gravitomagnetism. Universe 2019, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Weber, C. On the interaction of mesoscopic quantum systems with gravity. Ann. Phys. 2005, 14, 253–278. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, G. The Schrödinger-Newton equations beyond Newton. Gen. Rel. Grav. 2015, 47, 1. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Khanna, F.C. Gravitational Bhabha scattering. Class. Quant. Grav. 2017, 34, 205007. [Google Scholar] [CrossRef]
- Santos, A.F.; Khanna, F.C. Thermal corrections for gravitational Möller scattering. Int. J. Mod. Phys. A 2019, 34, 1950044. [Google Scholar] [CrossRef]
- Clark, S.J.; Tucker, R.W. Gauge symmetry and gravitoelectromagnetism. Class. Quant. Grav. 2000, 17, 4125–4158. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Khanna, F.C. Quantized gravitoelectromagnetism theory at finite temperature. Int. J. Mod. Phys. A 2016, 31, 1650122. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Khanna, F.C. Gravitational Casimir effect at finite temperature. Int. J. Theor. Phys. 2016, 55, 5356–5367. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Ramos, J.; Khanna, F.C. Non-Abelian Gravitoelectromagnetism and applications at finite temperature. Adv. High Energy Phys. 2020, 2020, 5193692. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.F.; Khanna, F.C. Lorentz violation and Gravitoelectromagnetism: Casimir effect and Stefan-Boltzmann law at Finite temperature. EPL 2019, 125, 41002. [Google Scholar] [CrossRef]
- Santos, A.F.; Khanna, F.C. Gravitoelectromagnetism, Cherenkov radiation at finite temperature. Mod. Phys. Lett. A 2019, 34, 1950015. [Google Scholar] [CrossRef]
- Jantzen, R.T.; Carini, P.; Bini, D. The Many faces of gravitoelectromagnetism. Ann. Phys. 1992, 215, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Maartens, R.; Bassett, B.A. Gravitoelectromagnetism. Class. Quant. Grav. 1998, 15, 705. [Google Scholar] [CrossRef]
- Mashhoon, B. Gravitoelectromagnetism. In Reference Frames and Gravitomagnetism Proceedings of the XXIII Spanish Relativity Meeting, Valladolid, Spain, 6–9 September 2000; World Scientific: Singapore, 2001; pp. 121–132. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Tartaglia, A. Test of gravitomagnetism with satellites around the Earth. Eur. Phys. J. Plus 2019, 134, 205. [Google Scholar] [CrossRef]
- Mashhoon, B. Gravitoelectromagnetism: A Brief review. arXiv 2003, arXiv:gr-qc/0311030. Available online: https://arxiv.org/abs/gr-qc/0311030 (accessed on 19 February 2021).
- Bakopoulos, A.; Kanti, P. From GEM to Electromagnetism. Gen. Rel. Grav. 2014, 46, 1742. [Google Scholar] [CrossRef] [Green Version]
- Poirier, J.; Mathews, G.J. Review of gravitomagnetic acceleration from accretion disks. Mod. Phys. Lett. A 2015, 30, 1530029. [Google Scholar] [CrossRef]
- Harris, E.G. Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields. Am. Journ. Phys. 1991, 59, 421. [Google Scholar] [CrossRef]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia. Princeton Series in Physics 1995. [Google Scholar]
- Alves, D.W.F.; Nastase, H. Hopfion solutions in gravity and a null fluid/gravity conjecture. arXiv 2018, arXiv:1812.08630. Available online: https://arxiv.org/abs/1812.08630 (accessed on 19 February 2021).
- Trautman, A. Solutions of the Maxwell and Yang-Mills Equations Associated with Hopf Fibrings. Int. J. Theor. Phys. 1977, 16, 561. [Google Scholar] [CrossRef]
- Rañada, A.F. A Topological Theory of the Electromagnetic Field. Lett. Math. Phys. 1989, 18, 97. [Google Scholar] [CrossRef]
- Rañada, A.F. Knotted solutions of the Maxwell equations in vacuum. J. Phys. A 1990, 23, L815. [Google Scholar] [CrossRef]
- Rañada, A.F.; Trueba, J.L. Two properties of electromagnetic knots. Phys. Lett. A 1997, 232, 25–33. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Electromagnetic vortex lines riding atop null solutions of the Maxwell equations. J. Opt. A 2004, 6, S181. [Google Scholar] [CrossRef]
- Irvine, W.; Bouwmeester, D. Linked and knotted beams of light. Nat. Phys. 2008, 4, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Besieris, I.M.; Shaarawi, A.M. Hopf-Ranãda linked and knotted light beam solution viewed as a null electromagnetic field. Opt. Lett. 2009, 34, 3887–3889. [Google Scholar] [CrossRef]
- Irvine, W.T.M. Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields. J. Phys. A 2010, 58, 385203, Corrigendum in 2018, 51, 019501. [Google Scholar] [CrossRef] [Green Version]
- Arrayás, M.; Trueba, J.L. Exchange of helicity in a knotted electromagnetic field. Ann. Phys. 2012, 524, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Rañada, A.F. On topology and electromagnetism. Ann. Phys. 2012, 524, A35–A37. [Google Scholar] [CrossRef]
- Dalhuisen, J.W.; Bouwmeester, D. Twistors and electromagnetic knots. J. Phys. A 2012, 45, 135201. [Google Scholar] [CrossRef]
- Kedia, H.; Bialynicki-Birula, I.; Peralta-Salas, D.; Irvine, W.T.M. Tying knots in light fields. Phys. Rev. Lett. 2013, 111, 150404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Enk, S.J. The covariant description of electric and magnetic field lines of null fields: Application to Hopf–Rañada solutions. J. Phys. A 2013, 46, 175204. [Google Scholar] [CrossRef] [Green Version]
- Arrayás, M.; Trueba, J.L. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots. J. Phys. A 2014, 48, 025203. [Google Scholar] [CrossRef]
- Kholodenko, A.L. Optical knots and contact geometry I. From Arnol’d inequality to Ranada’s dyons. Anal. Math. Phys. 2016, 6, 163–198. [Google Scholar] [CrossRef] [Green Version]
- Kholodenko, A.L. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots. Ann. Phys. 2016, 371, 77–124. [Google Scholar] [CrossRef] [Green Version]
- Kedia, H.; Foster, D.; Dennis, M.R.; Irvine, W.T.M. Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 2016, 117, 274501. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Strange, P. Properties of null knotted solutions to Maxwell’s equations. In Proceedings of the Complex Light and Optical Forces XI, San Francisco, CA, USA, 28 January–2 February 2017; p. 101201C. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.P. Monochromatic knots and other unusual electromagnetic disturbances: Light localised in 3D. J. Phys. Comm. 2018, 2, 015024. [Google Scholar] [CrossRef]
- Lechtenfeld, O.; Zhilin, G. A new construction of rational electromagnetic knots. Phys. Lett. A 2018, 382, 1528–1533. [Google Scholar] [CrossRef] [Green Version]
- Arrayás, M.; Trueba, J.L. Spin-Orbital Momentum Decomposition and Helicity Exchange in a Set of Non-Null Knotted Electromagnetic Fields. Symmetry 2018, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Arrayás, M.; Trueba, J.L. The method of Fourier transforms applied to electromagnetic knots. Eur. J. Phys. 2018, 40, 014205. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Lechtenfeld, O. On rational electromagnetic fields. Phys. Lett. A 2020, 384, 126445. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, C.; Sircar, N.; Sonnenschein, J. New knotted solutions of Maxwell’s equations. J. Phys. A 2015, 48, 255204. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.W.F.; Hoyos, C.; Nastase, H.; Sonnenschein, J. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics. Phys. Lett. B 2017, 773, 412–416. [Google Scholar] [CrossRef]
- Alves, D.W.F.; Hoyos, C.; Nastase, H.; Sonnenschein, J. Knotted solutions, from electromagnetism to fluid dynamics. Int. J. Mod. Phys. A 2017, 32, 1750200. [Google Scholar] [CrossRef] [Green Version]
- Nastase, H.; Sonnenschein, J. Lagrangian formulation, generalizations and quantization of null Maxwell’s knots. Fortsch. Phys. 2018, 66, 1800042. [Google Scholar] [CrossRef] [Green Version]
- Arrayás, M.; Trueba, J.L. On the Fibration Defined by the Field Lines of a Knotted Class of Electromagnetic Fields at a Particular Time. Symmetry 2017, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.C.E.; Goulart, E.; Ottoni, J.E. On spacetime foliations and electromagnetic knots. J. Phys. A 2019, 52, 265203. [Google Scholar] [CrossRef] [Green Version]
- Crişan, A.V.; Vancea, I.V. Finsler geometries from topological electromagnetism. Eur. Phys. J. C 2020, 80, 566. [Google Scholar] [CrossRef]
- Thirring, H. Republication of: On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation. Phys. Z. 1918, 19, 204–205. [Google Scholar] [CrossRef]
- Lense, J.; Thirring, H. Über den Einfluss der Eigenrotation der Zentralkoerper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156–163. [Google Scholar]
- Mashhoon, B. On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 1993, 173, 347–354. [Google Scholar] [CrossRef]
- Arrayás, M.; Trueba, J.L. Motion of charged particles in a knotted electromagnetic field. J. Phys. A 2010, 43, 235401. [Google Scholar] [CrossRef] [Green Version]
- Crişan, A.V.; Vancea, I.V. Nonlinear dynamics of a charged particle in a strong non-null knot wave background. Int. J. Mod. Phys. A 2020, 35, 2050113. [Google Scholar] [CrossRef]
- Arrayás, M.; Bouwmeester, D.; Trueba, J.L. Knots in electromagnetism. Phys. Rept. 2017, 667, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Vancea, I.V. Knots and Maxwell’s Equations. In Essential Guide to Maxwell’s Equations; Erickson, C., Ed.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2018. [Google Scholar]
- Vancea, I.V. Field Line Solutions of the Einstein–Maxwell Equations. In Essential Guide to Maxwell’s Equations; Erickson, C., Ed.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2018. [Google Scholar]
- Crişan, A.V.; Vancea, I.V. Geometric and Quantum Properties of Charged Particles in Monochromatic Electromagnetic Knot Background. Submitted for publication. 2020. [Google Scholar]
- Swearngin, J.; Thompson, A.; Wickes, A.; Dalhuisen, J.W.; Bouwmeester, D. Gravitational Hopfions. arXiv 2013, arXiv:1302.1431. Available online: https://arxiv.org/abs/1302.1431 (accessed on 19 February 2021).
- Thompson, A.; Swearngin, J.; Bouwmeester, D. Linked and knotted gravitational radiation. J. Phys. A 2014, 47, 355205. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Wickes, A.; Swearngin, J.; Bouwmeester, D. Classification of Electromagnetic and Gravitational Hopfions by Algebraic Type. J. Phys. A 2015, 48, 205202. [Google Scholar] [CrossRef] [Green Version]
- Vancea, I.V. On the existence of the field line solutions of the Einstein–Maxwell equations. Int. J. Geom. Meth. Mod. Phys. 2017, 15, 1850054. [Google Scholar] [CrossRef] [Green Version]
- Kopiński, J.; Natário, J. On a remarkable electromagnetic field in the Einstein Universe. Gen. Rel. Grav. 2017, 49, 81. [Google Scholar] [CrossRef] [Green Version]
- Smołka, T.; Jezierski, J. Simple description of generalized electromagnetic and gravitational hopfions. Class. Quant. Grav. 2018, 35, 245010. [Google Scholar] [CrossRef] [Green Version]
- Sabharwal, S.; Dalhuisen, J.W. Anti-Self-Dual Spacetimes, Gravitational Instantons and Knotted Zeros of the Weyl Tensor. JHEP 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M.; Cho, F.H.; Yoon, J.H. Vacuum decomposition of Einstein’s theory and knot topology of vacuum space-time. Class. Quant. Grav. 2013, 30, 055003. [Google Scholar] [CrossRef]
- Ramos, J.; Montigny, M.; Khanna, F.C. Weyl gravitoelectromagnetism. Gen. Rel. Grav. 2018, 50, 83. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschits, E.M. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1975. [Google Scholar]
- Bakopoulos, A.; Kanti, P. Novel Ansatzes and Scalar Quantities in Gravito-Electromagnetism. Gen. Rel. Grav. 2017, 49, 44. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; McClune, J.C.; Quevedo, H. The Gravitoelectromagnetic stress energy tensor. Class. Quant. Grav. 1999, 16, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | |
3. | The numerical factors result from the identification of the GEM potentials with the corresponding components of the tensor such that the equations obtained for have the form of Maxwell’s equations. For different numerical factors, the analogy between the electric permittivity of vacuum and is lost. |
4. | The Hopf knots are given by maps from to . We will comment on the particularities of this case in the last section. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crişan, A.; Godinho, C.; Vancea, I. Gravitoelectromagnetic Knot Fields. Universe 2021, 7, 46. https://doi.org/10.3390/universe7030046
Crişan A, Godinho C, Vancea I. Gravitoelectromagnetic Knot Fields. Universe. 2021; 7(3):46. https://doi.org/10.3390/universe7030046
Chicago/Turabian StyleCrişan, Adina, Cresus Godinho, and Ion Vancea. 2021. "Gravitoelectromagnetic Knot Fields" Universe 7, no. 3: 46. https://doi.org/10.3390/universe7030046
APA StyleCrişan, A., Godinho, C., & Vancea, I. (2021). Gravitoelectromagnetic Knot Fields. Universe, 7(3), 46. https://doi.org/10.3390/universe7030046