The Effect of Higher Dimensional QCD Operators on the Spectroscopy of Bottom-Up Holographic Models
Abstract
:Funding
Conflicts of Interest
References
- Erlich, J.; Katz, E.; Son, D.T.; Stephanov, M.A. QCD and a holographic model of hadrons. Phys. Rev. Lett. 2005, 95, 261602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rold, L.D.; Pomarol, A. Chiral symmetry breaking from five dimensional spaces. Nucl. Phys. B 2005, 721, 79. [Google Scholar] [CrossRef] [Green Version]
- Karch, A.; Katz, E.; Son, D.T.; Stephanov, M.A. Linear confinement and AdS/QCD. Phys. Rev. D 2006, 74, 015005. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; de Teramond, G.F.; Dosch, H.G.; Erlich, J. Light-Front Holographic QCD and Emerging Confinement. Phys. Rep. 2015, 584, 1. [Google Scholar] [CrossRef] [Green Version]
- Anisovich, A.V.; Anisovich, V.V.; Sarantsev, A.V. Systematics of q anti-q states in the (n, M**2) and (J, M**2) planes. Phys. Rev. D 2000, 62, 051502(R). [Google Scholar] [CrossRef] [Green Version]
- Bugg, D.V. Four sorts of meson. Phys. Rep. 2004, 397, 257. [Google Scholar] [CrossRef] [Green Version]
- Klempt, E.; Zaitsev, A. Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts. Phys. Rep. 2007, 454, 1. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Implications of the Crystal Barrel data for meson-baryon symmetries. Mod. Phys. Lett. A 2008, 23, 3159. [Google Scholar] [CrossRef] [Green Version]
- Boschi-Filho, H.; Braga, N.R.F.; Carrion, H.L. Glueball Regge trajectories from gauge/string duality and the Pomeron. Phys. Rev. D 2006, 73, 047901. [Google Scholar] [CrossRef] [Green Version]
- Hirn, J.; Rius, N.; Sanz, V. Geometric approach to condensates in holographic QCD. Phys. Rev. D 2006, 73, 085005. [Google Scholar] [CrossRef] [Green Version]
- Ghoroku, K.; Maru, N.; Tachibana, M.; Yahiro, M. Holographic model for hadrons in deformed AdS(5) background. Phys. Lett. B 2006, 633, 602. [Google Scholar] [CrossRef] [Green Version]
- Csáki, C.; Reece, M. Toward a systematic holographic QCD: A Braneless approach. J. High Energy Phys. 2007, 0705, 062. [Google Scholar] [CrossRef]
- Shock, J.P.; Wu, F.; Wu, Y.-L.; Xie, Z.-F. AdS/QCD Phenomenological Models from a Back-Reacted Geometry. J. High Energy Phys. 2007, 0703, 064. [Google Scholar] [CrossRef]
- Forkel, H.; Beyer, M.; Frederico, T. Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD. J. High Energy Phys. 2007, 0707, 077. [Google Scholar]
- Batell, B.; Gherghetta, T. Dynamical Soft-Wall AdS/QCD. Phys. Rev. D 2008, 78, 026002. [Google Scholar] [CrossRef] [Green Version]
- Gherghetta, T.; Kapusta, J.I.; Kelley, T.M. Chiral symmetry breaking in the soft-wall AdS/QCD model. Phys. Rev. D 2009, 79, 076003. [Google Scholar] [CrossRef] [Green Version]
- De Paula, W.; Frederico, T.; Forkel, H.; Beyer, M. Dynamical AdS/QCD with area-law confinement and linear Regge trajectories. Phys. Rev. D 2009, 79, 075019. [Google Scholar] [CrossRef] [Green Version]
- Vega, A.; Schmidt, I. Hadrons in AdS/QCD correspondence. Phys. Rev. D 2009, 79, 055003. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. AdS/QCD models describing a finite number of excited mesons with Regge spectrum. Phys. Lett. B 2009, 675, 54. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Regge spectrum from holographic models inspired by OPE. Phys. Lett. B 2009, 678, 477. [Google Scholar] [CrossRef] [Green Version]
- De Teramond, G.F.; Brodsky, S.J. Light-Front Holography: A First Approximation to QCD. Phys. Rev. Lett. 2009, 102, 081601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherman, A.; Cohen, T.D.; Werbos, E.S. The Chiral condensate in holographic models of QCD. Phys. Rev. C 2009, 79, 045203. [Google Scholar] [CrossRef] [Green Version]
- Becciolini, D.; Redi, M.; Wulzer, A. AdS/QCD: The Relevance of the Geometry. J. High Energy Phys. 2010, 1001, 074. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.; Pusenkov, I. The quark masses and meson spectrum: A holographic approach. Phys. Lett. B 2013, 726, 283. [Google Scholar] [CrossRef] [Green Version]
- Zuo, F. Improved Soft-Wall model with a negative dilaton. Phys. Rev. D 2010, 82, 086011. [Google Scholar] [CrossRef] [Green Version]
- Gutsche, T.; Lyubovitskij, V.E.; Schmidt, I.; Vega, A. Dilaton in a soft-wall holographic approach to mesons and baryons. Phys. Rev. D 2012, 85, 076003. [Google Scholar] [CrossRef] [Green Version]
- Gutsche, T.; Lyubovitskij, V.E.; Schmidt, I.; Vega, A. Chiral Symmetry Breaking and Meson Wave Functions in Soft-Wall AdS/QCD. Phys. Rev. D 2013, 87, 056001. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Generalized Soft Wall Model. Phys. Lett. B 2013, 719, 399. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.; Tedder, A. Perfecting the Ultra-violet of Holographic Descriptions of QCD. Phys. Lett. B 2006, 642, 546. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Low-energy holographic models for QCD. Phys. Rev. C 2011, 83, 048202. [Google Scholar] [CrossRef]
- Braga, N.R.F.; Contreras, M.A.M.; Diles, S. Decay constants in soft wall AdS/QCD revisited. Phys. Lett. B 2016, 763, 203. [Google Scholar] [CrossRef] [Green Version]
- Braga, N.R.F.; Contreras, M.A.M.; Diles, S. Holographic model for heavy-vector-meson masses. EPL 2016, 115, 31002. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.A.M.; Vega, A. Nonlinear Regge trajectories with AdS/QCD. Phys. Rev. D 2020, 102, 046007. [Google Scholar] [CrossRef]
- Forkel, H. Holographic glueball structure. Phys. Rev. D 2008, 78, 025001. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, P.; Fazio, F.D.; Jugeau, F.; Nicotri, S. Investigating AdS/QCD duality through scalar glueball correlators. Int. J. Mod. Phys. A 2009, 24, 4177. [Google Scholar] [CrossRef]
- Colangelo, P.; Fazio, F.D.; Giannuzzi, F.; Jugeau, F.; Nicotri, S. Light scalar mesons in the soft-wall model of AdS/QCD. Phys. Rev. D 2008, 78, 055009. [Google Scholar] [CrossRef] [Green Version]
- Jugeau, F.; Narison, S.; Ratsimbarison, H. SVZ 1/q2-expansion versus some QCD holographic models. Phys. Lett. B 2013, 722, 111. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Holographic like models as a five-dimensional rewriting of large-Nc QCD. Int. J. Mod. Phys. A 2010, 25, 5683. [Google Scholar] [CrossRef] [Green Version]
- Afonin, S.S. Note on Relation between Bottom-Up Holographic Models and Large- Nc QCD. Adv. High Energy Phys. 2017, 2017, 8358473. [Google Scholar] [CrossRef] [Green Version]
- Gutsche, T.; Lyubovitskij, V.E.; Schmidt, I. Electromagnetic properties of the nucleon and the Roper resonance in soft-wall AdS/QCD at finite temperature. Nucl. Phys. B 2020, 952, 114934. [Google Scholar] [CrossRef]
- Lyubovitskij, V.E.; Schmidt, I. Gluon parton densities in soft-wall AdS/QCD. arXiv 2012, arXiv:2012.01334. [Google Scholar]
- Herzog, C.P. A Holographic Prediction of the Deconfinement Temperature. Phys. Rev. Lett. 2007, 98, 091601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, N.R.F.; Contreras, M.A.M.; Diles, S. Holographic Picture of Heavy Vector Meson Melting. Eur. Phys. J. C 2016, 76, 598. [Google Scholar] [CrossRef]
- Afonin, S.; Katanaeva, A. On holographic relation between radial meson trajectories and deconfinement temperature. Phys. Rev. D 2018, 98, 114027. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B 1974, 72, 461. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Baryons in the 1/n Expansion. Nucl. Phys. B 1979, 160, 57. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105. [Google Scholar] [CrossRef] [Green Version]
- Dudek, J.J.; Edwards, R.G.; Peardon, M.J.; Richards, D.G.; Thomas, C.E. Hadron Spectrum Collaboration. Toward the excited meson spectrum of dynamical QCD. Phys. Rev. D 2010, 82, 034508. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonin, S. The Effect of Higher Dimensional QCD Operators on the Spectroscopy of Bottom-Up Holographic Models. Universe 2021, 7, 102. https://doi.org/10.3390/universe7040102
Afonin S. The Effect of Higher Dimensional QCD Operators on the Spectroscopy of Bottom-Up Holographic Models. Universe. 2021; 7(4):102. https://doi.org/10.3390/universe7040102
Chicago/Turabian StyleAfonin, Sergey. 2021. "The Effect of Higher Dimensional QCD Operators on the Spectroscopy of Bottom-Up Holographic Models" Universe 7, no. 4: 102. https://doi.org/10.3390/universe7040102
APA StyleAfonin, S. (2021). The Effect of Higher Dimensional QCD Operators on the Spectroscopy of Bottom-Up Holographic Models. Universe, 7(4), 102. https://doi.org/10.3390/universe7040102