Electron-Positron Vacuum Instability in Strong Electric Fields. Relativistic Semiclassical Approach
Abstract
:1. Introduction
1.1. A General Picture
1.2. Semiclassical Approximation
2. Relativistic Spinless Charged Particle in Static Field
2.1. Reduction of Klein-Gordon-Fock Equation to Schrödinger Equation
2.2. Relativistic Spinless Charged Particle in Coulomb Field of Point-Like Center
3. Dirac Equation for Particle in Static Electric Field,
3.1. Dirac System in Case of One-Dimensional Electric Field
3.2. Dirac System in Central-Symmetric Field
3.3. Reduction of Dirac System to Schrödinger Equation
3.4. Interpretation of Bound States in a Weak Field
3.5. Exact Solution for Electron in Coulomb Field of Point-Like Center
3.6. Avoiding Problem of Falling to Center in Realistic Treatment. Spherical Nucleus of Finite Size
4. Semiclassical Approach to Dirac Equation Transformed to Second-Order Differential Equation
4.1. Accuracy of Calculation of Energy Levels in Semiclassical Approximation
4.2. Semiclassical Approximation to Coulomb Field of Point-Like Nucleus
4.3. Finite Nucleus. Semiclassical Wave Functions and Quantization Rule
4.4. Critical Charge of the Nucleus
4.5. Number of Levels Which Crossed Boundary of Lower Continuum
4.6. Energy of Single-Particle Levels at
4.6.1. Energy Spectrum for
4.6.2. Energy Spectrum for
4.7. Exponential Estimate of Probability of Spontaneous Production of Positrons
4.8. Critical Charge of Nucleus for Muon
5. Semiclassical Approximation to System of Linear Dirac Equations
5.1. Semiclassical Wave Functions
5.2. Nonrelativistic Limit
5.3. Bohr-Sommerfeld Quantization Rule
5.4. Probability of Spontaneous Production of Positrons
5.5. Semiclassical Method for Noncentral Potentials Obeying System of Linear Dirac Equations
6. Spontaneous Production of Positrons in Heavy-Ion Collisions
6.1. Approach to the Problem
6.2. Electron Energy as a Function of Distance between Nuclei
6.3. Tunneling in the Two-Center Problem. Angular Distribution of Positrons
6.4. Screening of K-Electron by Electron Cloud of Not Fully Stripped Quasi-Molecule
6.5. Calculation of Positron Production Employing the Imaginary-Time Method
6.5.1. General Description of the Method
6.5.2. Tunneling in Slowly Time-Dependent Potential
6.5.3. Correction on Non-Adiabaticity to the Spontaneous Positron Production in Low-Energy Heavy-Ion Collisions
7. Many-Particle Semiclassical Approximation. Electron Condensation in Upper Continuum
7.1. Screening of a Source of Positive Charge in Presence of External Electrons
7.2. Filling of the Vacuum Shell by Electrons
7.3. A Detailed Derivation of Relativistic Thomas-Fermi Equation
7.4. Weak Screening,
7.5. Strong Screening,
7.6. Falling to the Center in Relativistic Thomas-Fermi Equation
8. Polarization of Vacuum
8.1. Polarization of Vacuum in Uniform Stationary Electric and Magnetic Fields
8.2. Noninteracting Photon, Electron, and Spin-Zero Boson Propagators
8.3. Dyson Equation for Photon Propagator
8.4. Calculation of Photon Polarization Operator
8.4.1. Case of a Weak Static Electric Field. Renormalization of Charge
8.4.2. Case of a Strong Static Electric field
8.5. Polarization of Vacuum and Electron Condensation
9. Distribution of Charge at Super-Short Distances from the Coulomb Center
9.1. Charge Distribution Near the Charge Source of Radius
9.1.1. Electron Condensation Is Not Included
9.1.2. Electron Condensation on Levels of Upper Continuum Is Included
9.2. Charge Source of Radius . Polarization of Vacuum and Electron Condensation on Levels in Lower Continuum
9.3. Distribution of Charge of Electron
10. Conclusions
Funding
Conflicts of Interest
References
- Migdal, A.B.; Voskresensky, D.N.; Popov, V.S. About vacuum charge distribution near supercharged nuclei. JETP Lett. 1976, 24, 163. [Google Scholar]
- Migdal, A.B.; Popov, V.S.; Voskresensky, D.N. Distribution of vacuum charge near supercharged nuclei. Sov. Phys. JETP 1977, 45, 436–444. [Google Scholar]
- Eletskii, V.L.; Voskresensky, D.N.; Popov, V.S. Quasi-classical approximation and Thomas-Fermi method for Z > 137. Sov. J. Nucl. Phys. 1977, 26, 526–532. [Google Scholar]
- Mur, V.C.; Popov, V.S.; Voskresensky, D.N. WKB method at Z > 137. JETP Lett. 1978, 28, 129–134. [Google Scholar]
- Mur, V.D.; Popov, V.S.; Voskresensky, D.N. On levels in the lower continuum. Sov. J. Nucl. Phys. 1978, 27, 283–289. [Google Scholar]
- Popov, V.S.; Eletsky, V.L.; Mur, V.D.; Voskresensky, D.N. WKB approximation for the Dirac equation at Z > 137. Phys. Lett. B 1978, 80, 68–72. [Google Scholar] [CrossRef]
- Popov, V.S.; Voskresensky, D.N.; Eletskii, V.L.; Mur, V.D. WKB method at Z > 137 and its applications to the theory of supercritical atoms. Sov. Phys. JETP 1979, 49, 218–231. [Google Scholar]
- Voskresensky, D.N. Distribution of Charge in Anomalous Nuclei. Ph.D. Thesis, MEPhI, Moscow, Russia, 1977. [Google Scholar]
- Pomeranchuk, I.; Smorodinsky, Y. On the energy levels of systems with Z > 137. J. Phys. USSR 1945, 9, 97. [Google Scholar]
- Gershtein, S.S.; Zeldovich, Y.B. Positron production during the mutural approach of heavy nuclei and the polarization of the vacuum. Sov. Phys. JETP 1970, 30, 358. [Google Scholar]
- Pieper, W.; Greiner, W. Interior electron shells in superheavy nuclei. Z. Phys. 1969, 218, 327. [Google Scholar] [CrossRef]
- Popov, V.S. Electron energy levels at Z > 137. JETP Lett. 1970, 11, 162. [Google Scholar]
- Popov, V.S. Collapse to center at Z greater than 137 and critical nuclear charge. Sov. J. Nucl. Phys. 1971, 12, 235. [Google Scholar]
- Popov, V.S. Position production in a Coulomb Field with Z > 137. Sov. Phys. JETP 1971, 32, 526. [Google Scholar]
- Popov, V.S. On the properties of the discrete spectrum for Z close to 137. Sov. Phys. JETP 1971, 33, 665. [Google Scholar]
- Zeldovich, Y.B.; Popov, V.S. Electronic structure of superheavy atoms. Sov. Phys. Uspekhi 1972, 14, 673. [Google Scholar] [CrossRef]
- Müller, B.; Rafelski, J.; Greiner, W. Auto-ionization of positrons in heavy ion collisions. Z. Phys. 1972, 257, 183–211. [Google Scholar] [CrossRef]
- Popov, V.S. Spontaneous positron production in collisions between heavy nuclei. Sov. Phys. JETP 1974, 38, 18. [Google Scholar]
- Popov, V.S. Critical charge in quantum electrodynamics. Phys. Atom. Nucl. 2001, 64, 367–392. [Google Scholar] [CrossRef]
- Rafelski, J.; Kirsch, J.; Müller, B.; Greiner, J.R.W. Probing QED vacuum with heavy ions. In New Horizons in Fundamental Physics; Schramm, S., Schäfer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 211–251. [Google Scholar]
- Voskresensky, D.N. Creation of Particles from Vacuum and Phase Transformations; Tutorial; MEPhI: Moscow, Russia, 1990. [Google Scholar]
- Ahmad, I.; Austin, S.M.; Back, B.B.; Betts, R.R.; Calaprice, F.P.; Chan, K.C.; Chishti, A.; Chowdhury, P.; Conner, C.; Dunford, R.W.; et al. Search for narrow sum-energy Lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier. Phys. Rev. Lett. 1995, 75, 2658. [Google Scholar] [CrossRef]
- Ganz, R.; Bär, R.; Bala, A.; Baumann, J.; Berg, W.; Bethge, K.; Billmeier, A.; Bokemeyer, H.; Fehlhaber, H.; Folger, H.; et al. Search for e+e− pairs with narrow sum-energy distributions in heavy-ion collisions. Phys. Lett. B 1996, 389, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Leinberger, U.; Berdermann, E.; Heine, F.; Heinz, S.; Joeres, O.; Kienle, P.; Koenig, I.; Koenig, W.; Kozhuharov, C.; Rhein, M.; et al. New results on e+e− line emission in U+Ta collisions. Phys. Lett. B 1997, 394, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Greiner, W.; Müller, B.; Rafelski, J. Quantum Electrodynamics of Strong Fields; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Zagrebaev, V.; Greiner, W. Low-energy collisions of heavy nuclei: Dynamics of sticking, mass transfer and fusion. J. Phys. G Nucl. Part. Phys. 2006, 34, 1. [Google Scholar] [CrossRef]
- Maltsev, I.A.; Shabaev, V.M.; Popov, R.V.; Kozhedub, Y.S.; Plunien, G.; Ma, X.; Stöhlker, T.; Tumakov, D.A. How to observe the vacuum decay in low-energy heavy-ion collisions. Phys. Rev. Lett. 2019, 123, 113401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagrebaev, V.I.; Oganessian, Y.T.; Itkis, M.G.; Greiner, W. Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions. Phys. Rev. C 2006, 73, 031602. [Google Scholar] [CrossRef] [Green Version]
- Gumberidze, A.; Stöhlker, T.; Beyer, H.F.; Bosch, F.; Bräuning-Demian, A.; Hagmann, S.; Kozhuharov, C.; Köhl, T.; Mann, R.; Indelicato, P.; et al. X-ray spectroscopy of highly-charged heavy ions at FAIR. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 248. [Google Scholar] [CrossRef]
- Ter-Akopian, G.M.; Greiner, W.; Meshkov, I.N.; Oganessian, Y.T.; Reinhardt, J.; Trubnikov, G.V. Layout of new experiments on the observation of spontaneous electron-positron pair creation in supercritical Coulomb fields. Int. J. Mod. Phys. E 2015, 24, 1550016. [Google Scholar] [CrossRef]
- Ma, X.; Wen, W.Q.; Zhang, S.F.; Yu, D.Y.; Cheng, R.; Yang, J.; Huang, Z.K.; Wang, H.B.; Zhu, X.L. HIAF: New opportunities for atomic physics with highly charged heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 408, 169. [Google Scholar] [CrossRef]
- Godunov, S.I.; Machet, B.; Vysotsky, M.I. Resonances in positron scattering on a supercritical nucleus and spontaneous production of e+e− pairs. Eur. Phys. J. C 2017, 77, 782. [Google Scholar] [CrossRef]
- Popov, R.V.; Bondarev, A.I.; Kozhedub, Y.S.; Maltsev, I.A.; Shabaev, V.M.; Tupitsyn, I.I.; Ma, X.; Plunien, G.; Stöhlker, T. One-center calculations of the electron-positron pair creation in low-energy collisions of heavy bare nuclei. Eur. Phys. J. D 2018, 72, 115. [Google Scholar] [CrossRef]
- Popov, R.V.; Shabaev, V.M.; Telnov, D.A.; Tupitsyn, I.I.; Maltsev, I.A.; Kozhedub, Y.S.; Bondarev, A.I.; Kozin, N.V.; Ma, X. How to access QED at a supercritical Coulomb field. Phys. Rev. D 2020, 102, 076005. [Google Scholar] [CrossRef]
- Mur, V.D.; Popov, V.S. Bound states near the lower continuum boundary. The fermion case. TMF 1976, 27, 429–438. [Google Scholar]
- Voskresensky, D.N. Vacuum Stability and Phase Transformations; Tutorial; MEPhI: Moscow, Russia, 1988. [Google Scholar]
- Migdal, A.B. Qualitative Methods in Quantum Theory; Benjamin: Reading, UK, 1977. [Google Scholar]
- Zuber, J.-B.; Itzykson, C. Quantum Field Theory; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics, Part 2: Theory of the Condensed State, 1st ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 9. [Google Scholar]
- Voskresensky, D.N. Quasiclassical description of condensed systems by a complex order parameter. Phys. Scr. 1993, 47, 333–354. [Google Scholar] [CrossRef]
- Migdal, A.B. Fermions and Bosons in Strong Fields; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Migdal, A.B.; Saperstein, E.E.; Troitsky, M.A.; Voskresensky, D.N. Pion degrees of freedom in nuclear matter. Phys. Rept. 1990, 192, 179–437. [Google Scholar] [CrossRef]
- Migdal, A.B. Stability of vacuum and limiting fields. Sov. Phys. JETP 1972, 34, 1184. [Google Scholar] [CrossRef]
- Migdal, A.B. Pion fields in nuclear matter. Rev. Mod. Phys. 1978, 50, 107. [Google Scholar] [CrossRef]
- Coleman, S.; Weinberg, E. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar] [CrossRef] [Green Version]
- Krainov, V.P. WKB metod for a strong Coulomb field. JETP Lett. 1971, 13, 255. [Google Scholar]
- Marinov, M.S.; Popov, V.S. A modification of the Bohr-Sommerfeld quantization condition. J. Phys. A Math. Gen. 1975, 8, 1575. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1982; Volume 4, ISBN 978-0-7506-3371-0. [Google Scholar]
- Bogolyubov, N.N.; Shirkov, D.V. Introduction in Theory of Quantum Fields, 4th ed.; Nauka: Moscow, Russia, 1984. [Google Scholar]
- Landau, L.D.; Pomeranchuk, I.Y. On the point interaction in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1955, 102, 489. [Google Scholar]
- Fradkin, E.S. On the asymptotic Green function in quantum electrodynamics. ZhETF (USSR) 1955, 28, 750. [Google Scholar]
- Migdal, A.B. Vacuum polarization in strong inhomogeneous fields. Sov. Phys. JETP 1972, 35, 845. [Google Scholar]
- Voskresensky, D.N. Zero charge or asymptotic freedom in quantum electrodynamics? Sov. J. Nucl. Phys. 1992, 55, 1090. [Google Scholar]
- Voskresensky, D.N. Vacuum charge distribution in the presence of static electric field in QED and of gluoelectric field in QCD. Phys. Atom. Nucl. 1993, 56, 232–236. [Google Scholar]
- Abrikosov, A.A.; Beneslavskii, S.D. Some properties of gapless semiconductors of the second kind. J. Low Temp. Phys. 1971, 5, 141. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Kotov, V.N.; Uchoa, B.; Pereira, V.M.; Neto, A.H.C.; Guinea, F. Electron-electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 2012, 84, 1067. [Google Scholar] [CrossRef]
- Kolomeisky, E.B.; Straley, J.P.; Zaidi, H. Fermion space charge in narrow-band gap semiconductors, Weyl semimetals and around highly charged nuclei. Phys. Rev. B 2013, 88, 165428. [Google Scholar] [CrossRef] [Green Version]
- Voskresensky, D.N. Screening and anti-screening in QED and in Weyl semimetals. arXiv 2012, arXiv:1208.5163. [Google Scholar]
- Bertulani, C.A.; Baur, G. Electromagnetic processes in relativistic heavy ion collisions. Phys. Rept. 1988, 163, 299. [Google Scholar] [CrossRef]
- Baur, G. Multiple electron positron pair production in relativistic heavy ion collisions: A strong field effect. Phys. Rev. A 1990, 42, 5736–5738. [Google Scholar] [CrossRef]
- Ivanov, L.N.; Zueva, T.V. Electron-positron pair production in heavy atomic nucleus collisions—I. Consistent quantum- mechanical approach. Phys. Scr. 1991, 43, 368–373. [Google Scholar] [CrossRef]
- Baur, G.; Hencken, K.; Trautmann, D. Electron-positron pair production in relativistic heavy ion collisions. Phys. Rept. 2007, 453, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.S. Pair production in a varying external field (quasiclassical approximation). Sov. Phys. JETP 1972, 34, 709. [Google Scholar]
- Bulanov, S.S.; Narozhny, N.B.; Mur, V.D.; Popov, V.S. Electron-positron pair production by electromagnetic pulses. JETP 2006, 102, 9. [Google Scholar] [CrossRef]
- Blaschke, D.B.; Prozorkevich, A.V.; Roberts, C.D.; Schmidt, S.M.; Smolyansky, A.S. Pair production and optical lasers. Phys. Rev. Lett. 2006, 96, 140402. [Google Scholar] [CrossRef] [Green Version]
- Han, W.-B.; Ruffini, R.; Xue, S.-S. Electron–positron pair oscillation in spatially inhomogeneous electric fields and radiation. Phys. Lett. B 2010, 691, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Piazza, A.D.; Müller, C.; Hatsagortsyan, K.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef] [Green Version]
- Narozhny, N.B.; Fedotov, A.M. Extreme light physics. Contemp. Phys. 2015, 56, 249. [Google Scholar] [CrossRef]
- Popov, V.S.; Mur, V.D.; Narozhnyi, N.B.; Popruzhenko, S.V. Electron–positron pair production from vacuum in the field of high-intensity laser radiation. JETP 2016, 122, 539–553. [Google Scholar] [CrossRef]
- Yakimenko, V.; Meuren, S.; Gaudio, F.D.; Baumann, C.; Fedotov, A.; Fiuza, F.; Grismayer, T.; Hogan, M.J.; Pukhov, A.; Silva, L.O.; et al. Prospect of studying nonperturbative QED with beam-beam Collisions. Phys. Rev. Lett. 2019, 122, 190404. [Google Scholar] [CrossRef] [Green Version]
- Pälffy, A.; Popruzhenko, S.V. Can extreme electromagnetic fields accelerate the α decay of nuclei? Phys. Rev. Lett. 2020, 124, 212505. [Google Scholar] [CrossRef] [PubMed]
- Voskresensky, D.N.; Yasuhira, M.; Tatsumi, T. Charge screening at first order phase transitions and hadron quark mixed phase. Nucl. Phys. A 2003, 723, 291–339. [Google Scholar] [CrossRef] [Green Version]
- Paschalidis, V.; Yagi, K.; Alvarez-Castillo, D.; Blaschke, D.B.; Sedrakian, A. Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars. Phys. Rev. D 2018, 97, 084038. [Google Scholar] [CrossRef] [Green Version]
- Voskresensky, D.N.; Sorokin, G.A.; Chernoutsan, A.I. Charge distribution in anomalous nuclei. JETP Lett. 1977, 25, 465–468. [Google Scholar]
- Witten, E. Cosmic Separation of phases. Phys. Rev. D 1984, 30, 272. [Google Scholar] [CrossRef]
- Gani, V.A.; Khlopov, M.Y.; Voskresensky, D.N. Double charged heavy constituents of dark atoms and superheavy nuclear objects. Phys. Rev. D 2019, 99, 015024. [Google Scholar] [CrossRef] [Green Version]
- Flambaum, V.V.; Ginges, J.S.M. Radiative potential and calculations of QED radiative corrections to energy levels and electromagnetic amplitudes in many-electron atoms. Phys. Rev. A 2005, 72, 052115. [Google Scholar] [CrossRef] [Green Version]
- Dyall, K.G.; Faegri, R., Jr. Introduction to Relativistic Quantum Theory; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Yu, O. Khetselius. Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scr. 2009, 135, 014023. [Google Scholar]
- Mur, V.D.; Popov, V.S. Bound states near the limit of the lower continuum (the boson case). TMF 1976, 27, 81–92. [Google Scholar] [CrossRef]
- Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Pergamon Press: Oxford, UK, 1977; Volume 3, ISBN 978-0-08-020940-1. [Google Scholar]
- Pauli, W. The relativistic one-particle problem. In General Principles of Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Rubinow, S.I.; Keller, J.B. Asymptotic solution of the Dirac equation. Phys. Rev. 1963, 131, 2789. [Google Scholar] [CrossRef]
- Stachel, J.; Plebansky, J. Classical particles with spin. I. The WKBJ approximation. J. Math. Phys. 1977, 18, 2368. [Google Scholar] [CrossRef]
- Popov, V.S.; Mur, V.D.; Sergeev, A.B. Quantization rules with allowance for barrier penetration. JETP 1991, 73, 9. [Google Scholar]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; McCraw Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Popov, V.S.; Eletsky, V.L.; Mur, V.D. Properties of deep-lying levels in a strong electrostatic field. Sov. Phys. JETP 1976, 44, 451. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Mechanics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
- Oberacker, V.; Soff, G.; Greiner, W. Internal pair formation following Coulomb excitation of heavy nuclei. Phys. Rev. Lett. 1976, 36, 1024. [Google Scholar] [CrossRef] [Green Version]
- Voskresensky, D.N.; Anisimov, N.Y. Properties of a pion condensate in a magnetic field. Sov. Phys. JETP 1980, 51, 13–22. [Google Scholar]
- Rumrich, K.; Greiner, W.; Soff, G. The influence of strong magnetic fields on position production in heavy-ion collisions. Phys. Lett. A 1987, 125, 394–398. [Google Scholar] [CrossRef]
- Oraevskii, V.N.; Rez, A.I.; Semikoz, V.B. Spontaneous production of positrons by a Coulomb center in a homogeneous magnetic field. Sov. Phys. JETP 1977, 45, 428. [Google Scholar]
- Lisin, V.I.; Marinov, M.S.; Popov, V.S. Critical electron state in heavy-ion collisions. Phys. Lett. B 1980, 91, 20–22. [Google Scholar] [CrossRef]
- Kolomeitsev, E.E.; Voskresensky, D.N. Time delays and advances in classical and quantum systems. J. Phys. G 2013, 40, 113101. [Google Scholar] [CrossRef] [Green Version]
- Vallarta, M.S.; Rosen, N. The relativistic Thomas-Fermi atom. Phys. Rev. 1932, 41, 708. [Google Scholar] [CrossRef]
- Müller, B.; Rafelski, J. Stabilization of the charged vacuum created by very strong electrical fields in nuclear matter. Phys. Rev. Lett. 1975, 34, 349. [Google Scholar] [CrossRef]
- Gambas, P. Die Statistische Theorie des Atoms und ihre Anwendungen; Springer: Berlin/Heidelberg, Germany, 1949. [Google Scholar]
- Voskresensky, D.N.; Senatorov, A.V. Rearrangement of the vacuum in strong electric and gravitational fields. Sov. J. Nucl. Phys. 1982, 36, 208–214. [Google Scholar]
- Agasian, N.O.; Voskresensky, D.N. Quark rearrangement in the strong gluonic field. Phys. Lett. B 1983, 127, 448–452. [Google Scholar] [CrossRef]
- Landau, L.D.; Abrikosov, A.A.; Khalatnikov, I.M. An asymptotic expression for the photon Green function in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1954, 95, 1177. [Google Scholar]
- Heisenberg, W.; Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 1936, 98, 714. [Google Scholar] [CrossRef]
- Weisskopf, V. On the electrodynamics of the vacuum on the basis of the quantum theory of the electron. Kong. Dans. Vid. Selsk. Mat. Fys. Medd. XIV 1936, 24, 3. [Google Scholar]
- Dunne, G.V. Heisenberg-Euler effective Lagrangians, Fields to Strings: Circumnavigating Theoretical Physics. In From Fields to Strings: Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2015; pp. 445–522. [Google Scholar] [CrossRef] [Green Version]
- Ritus, V.I. Lagrangian of an intense electromagnetic field and quantum electrodynamics at short distances. Sov. Phys. JETP 1975, 42, 774. [Google Scholar]
- Ritus, V.I. Effective Lagrange function of intense electromagnetic field in QED. In Proceedings of the Conference of Frontier Tests of QED and Physics of the Vacuum, Sandanski, Bulgaria, 9–15 June 1998; Zavattini, E., Bakalov, D., Rizzo, C., Eds.; Heron Press: Sofia, Bulgaria, 1998. [Google Scholar]
- Dunne, G.V.; Harris, Z. On the higher loop Euler-Heisenberg trans-series structure. arXiv 2021, arXiv:2101.10409. [Google Scholar]
- Gies, H.; Karbstein, F. An Addendum to the Heisenberg-Euler effective action beyond one loop. JHEP 2017, 1703, 108, Erratums corrected in v4 of arXiv:1612.07251. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F. Tadpole diagrams in constant electromagnetic fields. JHEP 2017, 1710, 75, Erratums corrected in v3 of arXiv:1709.03819. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F. An all-loop result for the strong magnetic field limit of the Heisenberg-Euler effective Lagrangian. Phys. Rev. Lett. 2019, 122, 211602, Erratums corrected in v2 of arXiv:1903.06998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirzhnits, D.A.; Linde, A.D. On the vacuum stability problem in quantum electrodynamics. Phys. Lett. B 1978, 73, 323–326. [Google Scholar] [CrossRef]
- Landau, L.D.; Abrikosov, A.A.; Khalatnikov, I.M. The electron mass in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1954, 96, 261. [Google Scholar]
- Kirzhnits, D.A. On the Problem of Moscow Zero; Preprint 339; P.N. Lebedev Inst., Akad. Nauk SSSR: Moscow, Russia, 1985. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voskresensky, D.N. Electron-Positron Vacuum Instability in Strong Electric Fields. Relativistic Semiclassical Approach. Universe 2021, 7, 104. https://doi.org/10.3390/universe7040104
Voskresensky DN. Electron-Positron Vacuum Instability in Strong Electric Fields. Relativistic Semiclassical Approach. Universe. 2021; 7(4):104. https://doi.org/10.3390/universe7040104
Chicago/Turabian StyleVoskresensky, Dmitry N. 2021. "Electron-Positron Vacuum Instability in Strong Electric Fields. Relativistic Semiclassical Approach" Universe 7, no. 4: 104. https://doi.org/10.3390/universe7040104
APA StyleVoskresensky, D. N. (2021). Electron-Positron Vacuum Instability in Strong Electric Fields. Relativistic Semiclassical Approach. Universe, 7(4), 104. https://doi.org/10.3390/universe7040104