Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures
Abstract
:1. Introduction
2. Asymptotic Expansion of the Casimir Free Energy in the Plane-Wave Basis
2.1. Casimir Free Energy for Plane-Sphere Geometry
2.2. Asymptotic Expansion
3. Leading-Order Correction for Individual Matsubara Frequencies
3.1. Positive Matsubara Frequencies
3.2. Zero Matsubara Frequency
4. Leading-Order Correction to PFA at Intermediate Temperatures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PFA | proximity-force approximation |
LO | leading order |
LO-SPA | leading order saddle-point approximation |
NTLO | next-to-leading order |
NTLO-SPA | next-to-leading order saddle-point approximation |
NNTLO | next-to-next-to-leading order |
TE | transverse electric |
TM | transverse magnetic |
WKB | Wentzel-Kramers-Brillouin |
Appendix A. Mie Scattering Amplitudes in the WKB Approximation
Appendix B. Next-to-Leading-Order Correction in the Saddle-Point Approximation
References
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet. 1948, 51, 793–795. [Google Scholar]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the thermal Casimir force. Nat. Phys. 2011, 7, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Torricelli, G.; Pirozhenko, I.; Thornton, S.; Lambrecht, A.; Binns, C. Casimir force between a metal and a semimetal. EPL 2011, 93, 51001. [Google Scholar] [CrossRef]
- Chang, C.C.; Banishev, A.A.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique. Phys. Rev. B 2012, 85, 165443. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Sanchez, D.; Fong, K.Y.; Bhaskaran, H.; Lamoreaux, S.; Tang, H.X. Casimir Force and In Situ Surface Potential Measurements on Nanomembranes. Phys. Rev. Lett. 2012, 109, 027202. [Google Scholar] [CrossRef] [Green Version]
- Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the Casimir Force between Ferromagnetic Surfaces of a Ni-Coated Sphere and a Ni-Coated Plate. Phys. Rev. Lett. 2013, 110, 137401. [Google Scholar] [CrossRef] [Green Version]
- Sedighi, M.; Svetovoy, V.B.; Palasantzas, G. Casimir force measurements from silicon carbide surfaces. Phys. Rev. B 2016, 93, 085434. [Google Scholar] [CrossRef]
- Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434. [Google Scholar] [CrossRef] [Green Version]
- Cunuder, A.L.; Petrosyan, A.; Palasantzas, G.; Svetovoy, V.; Ciliberto, S. Measurement of the Casimir force in a gas and in a liquid. Phys. Rev. B 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Elzbieciak-Wodka, M.; Popescu, M.N.; Ruiz-Cabello, F.J.M.; Trefalt, G.; Maroni, P.; Borkovec, M. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory. J. Chem. Phys. 2014, 140, 104906. [Google Scholar] [CrossRef] [Green Version]
- Ether, D.S., Jr.; Pires, L.B.; Umrath, S.; Martinez, D.; Ayala, Y.; Pontes, B.; de S Araújo, G.R.; Frases, S.; Ingold, G.-L.; Rosa, F.S.S.; et al. Probing the Casimir force with optical tweezers. EPL 2015, 112, 44001. [Google Scholar] [CrossRef] [Green Version]
- Garrett, J.L.; Somers, D.A.T.; Munday, J.N. Measurement of the Casimir Force between Two Spheres. Phys. Rev. Lett. 2018, 120, 040401. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef] [Green Version]
- Decca, R.; Aksyuk, V.; López, D. Casimir Force in Micro and Nano Electro Mechanical Systems. Lect. Notes Phys. 2011, 834, 287–309. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Progress in Experimental Measurements of the Surface–Surface Casimir Force: Electrostatic Calibrations and Limitations to Accuracy. Lect. Notes Phys. 2011, 834, 219–248. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Recent measurements of the Casimir force: Comparison between experiment and theory. Mod. Phys. Lett. A 2020, 35, 2040007. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Corrado, M.R.; Mahbub, A.R.; Shelden, C.; Munday, J.N. Recent progress in engineering the Casimir effect—Applications to nanophotonics, nanomechanics, and chemistry. Nanophotonics 2021, 10, 523. [Google Scholar] [CrossRef]
- Emig, T. Fluctuation-induced quantum interactions between compact objects and a plane mirror. J. Stat. Mech. 2008, 2008, P04007. [Google Scholar] [CrossRef] [Green Version]
- Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Casimir energy between a plane and a sphere in electromagnetic vacuum. Phys. Rev. A 2008, 78, 012115. [Google Scholar] [CrossRef] [Green Version]
- Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Casimir Forces between Arbitrary Compact Objects. Phys. Rev. Lett. 2007, 99, 170403. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A.; Maia Neto, P.A.; Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 2006, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 2009, 80, 085021. [Google Scholar] [CrossRef] [Green Version]
- Derjaguin, B. Untersuchungen über die Reibung und Adhäsion, IV—Theorie des Anhaftens kleiner Teilchen. Kolloid-Z. 1934, 69, 155–164. [Google Scholar] [CrossRef]
- Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation. Phys. Rev. Lett. 2017, 119, 043901. [Google Scholar] [CrossRef]
- Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. Advancing numerics for the Casimir effect to experimentally relevant aspect ratios. Phys. Scr. 2018, 93, 114003. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Ingold, G.-L. CaPS: Casimir Effect in the Plane-Sphere Geometry. J. Open Source Softw. 2020, 5, 2011. [Google Scholar] [CrossRef] [Green Version]
- Spreng, B.; Maia Neto, P.A.; Ingold, G.-L. Plane-wave approach to the exact van der Waals interaction between colloid particles. J. Chem. Phys. 2020, 153, 024115. [Google Scholar] [CrossRef] [PubMed]
- Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 1956, 2, 73–83. [Google Scholar]
- Kats, E.I. Influence of nonlocality effects on van der Waals interaction. Sov. Phys. JETP 1977, 46, 109–113. [Google Scholar]
- Jaekel, M.T.; Reynaud, S. Casimir force between partially transmitting mirrors. J. Phys. 1991, 1, 1395–1409. [Google Scholar] [CrossRef] [Green Version]
- Genet, C.; Lambrecht, A.; Reynaud, S. Casimir force and the quantum theory of lossy optical cavities. Phys. Rev. A 2003, 67, 043811. [Google Scholar] [CrossRef] [Green Version]
- Parsegian, V.A. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Spreng, B.; Hartmann, M.; Henning, V.; Maia Neto, P.A.; Ingold, G.-L. Proximity force approximation and specular reflection: Application of the WKB limit of Mie scattering to the Casimir effect. Phys. Rev. A 2018, 97, 062504. [Google Scholar] [CrossRef]
- Nussenzveig, H.M. High-Frequency Scattering by a Transparent Sphere. I. Direct Reflection and Transmission. J. Math. Phys. 1969, 10, 82–124. [Google Scholar] [CrossRef]
- Khare, V. Short-Wavelength Scattering of Electromagnetic Waves by a Homogeneous Sphere. Ph.D. Thesis, University of Rochester, Rochester, NY, USA, 1975. [Google Scholar]
- Nussenzveig, H.M. Diffraction Effects in Semiclassical Scattering; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Grandy, W.T., Jr. Scattering of Waves from Large Spheres; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Teo, L.P.; Bordag, M.; Nikolaev, V. Corrections beyond the proximity force approximation. Phys. Rev. D 2011, 84, 125037. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Casimir forces beyond the proximity approximation. EPL 2012, 97, 50001. [Google Scholar] [CrossRef]
- Henning, V.; Spreng, B.; Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. The role of diffraction in the Casimir effect beyond the proximity force approximation. J. Opt. Soc. Am. B 2019, 36, C77–C87. [Google Scholar] [CrossRef] [Green Version]
- Krause, D.E.; Decca, R.S.; López, D.; Fischbach, E. Experimental Investigation of the Casimir Force beyond the Proximity-Force Approximation. Phys. Rev. Lett. 2007, 98, 050403. [Google Scholar] [CrossRef]
- Liu, M.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Examining the Casimir puzzle with an upgraded AFM-based technique and advanced surface cleaning. Phys. Rev. B 2019, 100. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Xu, J.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Phys. Rev. A 2019, 100, 052511. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, G.; Spreng, B.; Maia Neto, P.A.; Ingold, G.-L.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Decca, R.S. Measurement of the Casimir Force between 0.2 and 8 μm: Experimental Procedures and Comparison with Theory. Universe 2021, 7, 93. [Google Scholar] [CrossRef]
- Sauer, F. Die Temperaturabhängigkeit von Dispersionskräften. Ph.D. Thesis, Universität Göttingen, Göttingen, Germany, 1962. [Google Scholar]
- Mehra, J. Temperature correction to the Casimir effect. Physica 1967, 37, 145–152. [Google Scholar] [CrossRef]
- Boström, M.; Sernelius, B.E. Thermal Effects on the Casimir Force in the 0.1–5 μm Range. Phys. Rev. Lett. 2000, 84, 4757–4760. [Google Scholar] [CrossRef]
- Genet, C.; Lambrecht, A.; Reynaud, S. Temperature dependence of the Casimir effect between metallic mirrors. Phys. Rev. A 2000, 62, 012110. [Google Scholar] [CrossRef] [Green Version]
- Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Quantum dissipative Brownian motion and the Casimir effect. Phys. Rev. E 2009, 80, 041113. [Google Scholar] [CrossRef] [PubMed]
- Parsegian, V.A.; Ninham, B.W. Temperature-dependent van der Waals forces. Biophys. J. 1970, 10, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Gies, H. Nonmonotonic Thermal Casimir Force from Geometry-Temperature Interplay. Phys. Rev. Lett. 2010, 105, 040403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, A.; Gies, H. Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations. Phys. Rev. D 2010, 82, 125019. [Google Scholar] [CrossRef] [Green Version]
- Canaguier-Durand, A.; Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Thermal Casimir Effect in the Plane-Sphere Geometry. Phys. Rev. Lett. 2010, 104, 040403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canaguier-Durand, A.; Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Thermal Casimir Effect for Drude metals in the plane-sphere geometry. Phys. Rev. A 2010, 82, 012511. [Google Scholar] [CrossRef] [Green Version]
- Zandi, R.; Emig, T.; Mohideen, U. Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude and plasma models. Phys. Rev. B 2010, 82, 195423. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P. Casimir energy and entropy in the sphere-sphere geometry. Phys. Rev. B 2011, 84, 075431. [Google Scholar] [CrossRef] [Green Version]
- Umrath, S.; Hartmann, M.; Ingold, G.-L.; Maia Neto, P.A. Disentangling geometric and dissipative origins of negative Casimir entropies. Phys. Rev. E 2015, 92, 042125. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, G.; Emig, T. Exact Results for Classical Casimir Interactions: Dirichlet and Drude Model in the Sphere-Sphere and Sphere-Plane Geometry. Phys. Rev. Lett. 2012, 109, 160403. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, G. Classical Casimir interaction of a perfectly conducting sphere and plate. Phys. Rev. D 2017, 95, 065004. [Google Scholar] [CrossRef] [Green Version]
- Bimonte, G. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature. II. Plasma versus Drude modeling, grounded versus isolated spheres. Phys. Rev. D 2018, 98, 105004. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Pirozhenko, I. Vacuum energy between a sphere and a plane at finite temperature. Phys. Rev. D 2010, 81, 085023. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Proximity force approximation for the Casimir energy as a derivative expansion. Phys. Rev. D 2011, 84, 105031. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative-expansion approach to the interaction between close surfaces. Phys. Rev. A 2014, 89, 062120. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions. Phys. Rev. D 2012, 86, 045021. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative expansion for the electromagnetic Casimir free energy at high temperatures. Phys. Rev. D 2015, 92, 125007. [Google Scholar] [CrossRef] [Green Version]
- Canaguier-Durand, A.; Ingold, G.-L.; Jaekel, M.T.; Lambrecht, A.; Maia Neto, P.A.; Reynaud, S. Classical Casimir interaction in the plane-sphere geometry. Phys. Rev. A 2012, 85, 052501. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M. Scattering and Diffraction in Physical Optics; World Scientific: Singapore, 2006. [Google Scholar] [CrossRef] [Green Version]
- Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen; B. G. Teubner: Leipzig, Germany, 1909; p. 60. [Google Scholar]
- Schoger, T.; Ingold, G.-L. Classical Casimir free energy for two Drude spheres of arbitrary radii: A plane-wave approach. SciPost Phys. 2021, 4, 011. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: http://dlmf.nist.gov/ (accessed on 1 May 2021).
- Paris, R.B. The evaluation of single Bessel function sums. Math. Æterna 2018, 8, 71–82. [Google Scholar]
- Bordag, M.; Nikolaev, V. First analytic correction beyond the proximity force approximation in the Casimir effect for the electromagnetic field in sphere-plane geometry. Phys. Rev. D 2010, 81, 065011. [Google Scholar] [CrossRef] [Green Version]
- Henning, V.; Spreng, B.; Maia Neto, P.A.; Ingold, G.L. Data for “Casimir interaction between a plane and a sphere: Correction to the proximity-force approximation at intermediate temperatures”. Zenodo 2021. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: Weinheim, Germany, 2004; Chapter 4. [Google Scholar] [CrossRef] [Green Version]
- Temme, N.M. Asymptotic Methods for Integrals; Series in Analysis; World Scientific: Singapore, 2015; Volume 6. [Google Scholar] [CrossRef]
- Spreng, B. Plane-Wave Approach to the Casimir Interaction between Colloid Particles. Ph.D. Thesis, Universität Augsburg, Augsburg, Germany, 2020. [Google Scholar]
- Nussenzveig, H.M. High-Frequency Scattering by an Impenetrable Sphere. Ann. Phys. 1965, 34, 23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henning, V.; Spreng, B.; Neto, P.A.M.; Ingold, G.-L. Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures. Universe 2021, 7, 129. https://doi.org/10.3390/universe7050129
Henning V, Spreng B, Neto PAM, Ingold G-L. Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures. Universe. 2021; 7(5):129. https://doi.org/10.3390/universe7050129
Chicago/Turabian StyleHenning, Vinicius, Benjamin Spreng, Paulo A. Maia Neto, and Gert-Ludwig Ingold. 2021. "Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures" Universe 7, no. 5: 129. https://doi.org/10.3390/universe7050129
APA StyleHenning, V., Spreng, B., Neto, P. A. M., & Ingold, G. -L. (2021). Casimir Interaction between a Plane and a Sphere: Correction to the Proximity-Force Approximation at Intermediate Temperatures. Universe, 7(5), 129. https://doi.org/10.3390/universe7050129