Effective String Description of the Confining Flux Tube at Finite Temperature
Abstract
:1. Introduction
2. A Brief Summary of LGTs
2.1. Finite Temperature LGTs
2.2. The Finite Temperature Interquark Potential
2.3. Center Symmetry and the Polyakov Loop
2.4. The Svetitsky–Yaffe Conjecture
- (a)
- The ordered (low temperature) phase of the spin model corresponds to the deconfined (high temperature) phase of the original gauge theory. This is the phase in which both the Polyakov loop, in the original LGT, and the spin, in the effective spin model, acquire a non-zero expectation value.
- (b)
- As for the operator content of the two models, the Polyakov loop is mapped into the spin operator, while the plaquette is mapped into the energy operator of the effective spin model. Accordingly, the Polyakov loop correlator in the confining phase, from which we extract the interquark potential, is mapped into the spin–spin correlator of the disordered, high temperature phase of the spin model
- (c)
- Thermal perturbations from the critical point in the original gauge theory, which are driven by the plaquette operator, are mapped into thermal perturbation of the effective spin model which are driven by the energy operator. Notice, however, the change in sign: An increase in temperature of the original gauge theory corresponds to a decrease of the temperature of the effective spin model.
2.5. EST Versus LGT: The Roughening Transition
3. Effective String Description of the Interquark Potential
- , low temperature
- , high temperature
3.1. The Nambu–Goto Action
3.2. The Nambu–Goto Action at Finite Temperature
3.3. Beyond Nambu–Goto
3.4. Beyond Nambu–Goto: The Boundary Term
4. Comparison with Monte Carlo Simulations
4.1. LGT Observables
4.2. The LGT in Dimensions
4.3. EST Predictions Versus Monte Carlo Results for Different LGTs
- All the models, except the one at the lowest temperature, show deviations in the fitted value of with respect to the Nambu–Goto prediction. These deviations are the signatures of the terms beyond Nambu–Goto which must be included in the EST action which we discussed in the previous section. They are exactly those needed to match the critical index of the deconfinement transition which in this case is instead of the Nambu–Goto value .
- The universal constant b is always compatible with the theoretical expectation. This represents a remarkable consistency check of the whole EST construction.
- The constant c shows the same trend for all the models: It is similar to the expected Nambu–Goto value, but always slightly smaller in magnitude. Most likely this deviation is due to the fact that in the fit we are neglecting higher terms, and indeed the first of them, the one proportional to , due to the expansion of the modified Bessel function has the opposite sign with respect to the one and may explain the decrease in magnitude of c.
5. Width of the Confining Flux Tube at High Temperature
5.1. Definition of the Flux Tube Thickness
5.2. Dimensional Reduction and the Svetitsky–Yaffe Approach
6. Open Issues and Concluding Remarks
- The deconfinement transition as a Hagedorn transition.One of the more interesting consequences of the EST description of confinement is that the deconfinement transition can be interpreted as a Hagedorn transition [119]. This can be understood (using a dual transformation) as a direct consequence of the tachyonic singularity in the interquark potential [7]. This Hagedorn behaviour has relevant consequences on the equation of state of pure gauge theories which can be precisely tested using Monte Carlo simulations. In fact, in pure gauge theories the only massive excitations in the confining phase are glueballs and the equation of state can be accurately modeled in terms of a gas of these massive, non-interacting glueballs. If one assumes a description of glueballs as closed color flux tubes (as for instance in the Isgur-Paton model [6]) then one should expect a Hagedorn-like [119] stringy behaviour of the glueball spectrum and as a consequence a highly non trivial temperature dependence of pressure and entropy across the deconfinement transition. This effect was observed for the first time in reference [120] for the Yang–Mills theory in (3 + 1) dimensions, and later also in theories in (2 + 1) dimensions [121] and in the (2 + 1) dimensional [122,123], finding always a very good agreement with the expected Hagedorn behaviour.
- The spacelike string tension at high Temperature.An interesting open issue in Lattice Gauge Theory is to understand and model the behaviour of the so called “space–like string tension” [124,125,126,127,128,129,130,131,132,133,134,135,136,137,138] across the deconfinement transition.The space–like string tension is extracted from the correlator of space–like Polyakov loops, i.e., Polyakov loops which lay in a space–like plane, orthogonal to the compact time direction . Due to their space–like nature these Polyakov loops do not play the role of order parameter of deconfinement and the space–like string tension extracted from them is different from the actual string tension of the model .At low temperature the two string tensions coincide but as the temperature increases they behave differently [124,125,126,127,139]. As we have seen decreases as the deconfinement temperature is approached and vanishes at the deconfinement point, while the space–like string tension remains constant and then increases in the deconfined phase [124,125,126]. The physical reason for this behavior is that the correlator of two space–like Polyakov loops describes quarks moving in a finite temperature environment. It can be shown that what we called space–like string tension is related to the screening masses in hot QCD [128,129,130,131,132,133,134] and thus it does not vanish in the deconfined phase.An EST description of this behaviour has been recently obtained [140] using the mapping between the Nambu–Goto action and the deformation of the free bosonic action. An important open issue in this context is to address the interplay of the space–like string tension with the intrinsic width of the flux tube.
- EST and interfaces.In this review we studied EST in two particular choices of boundary conditions for the world sheet: Wilson loops (rectangular geometry) and Polyakov loop correlators (cylindrical geometry). There is a third important case, the toroidal geometry, which cannot be easily realized in non-abelian LGTs, but is pretty natural in three dimensional abelian gauge theories. These models, thanks to the Kramers–Wannier duality can be mapped into standard three dimensional spin models (the most relevant example being the 3D gauge Ising model which is mapped into the three dimensional Ising spin model). By suitably choosing the boundary conditions of the spin model (for instance: Antiperiodic in the Ising case) in the low temperature phase one can induce the formation of interfaces which can be described by EST with a toroidal world sheet [31,36,141,142,143,144,145,146]. Interfaces in the spin model are in some sense the dual of the Wilson loops in the gauge model. The partition function of the Nambu–Goto string with this toroidal boundary conditions can be evaluated with the same tools used for the Polyakov loop correlators [53]. The major reason of interest of this setting is the absence of boundary terms. It is thus much easier to study higher order terms of EST and in fact some of the most precise Monte Carlo studies of these terms were obtained using interfaces in the 3D Ising model [45,146]. The analogy of the high temperature regime in this context is obtained by “squeezing” the interface in one direction. From the spin model point of view this is the regime in which one is approaching dimensional reduction from three to two dimensions [147]. A systematic comparison of EST predictions and Monte Carlo simulations in this regime is still lacking and could lead to an interesting and original insight into EST behaviour.
- Interplay between the EST and the dual superconductor model of confinement.In this review we introduced the EST, following the seminal papers of Lüscher and collaborators, as a tool to describe the behaviour of Wilson loops in LGT beyond the roughening transition. There is, however, a different, interesting, route which may lead to an effective string description of confinement which was proposed long time ago by Nielsen and Olesen [148], ’t Hooft [149], Mandelstam [150] and Polyakov [151]. The proposal relies on the description of the QCD vacuum as a coherent state of color magnetic monopoles or, equivalently, as a magnetic (dual) superconductor (for a review see for instance [152,153,154]). According to this picture the (dual) Meissner effect naturally leads to vortex like structures: The Abrikosov vortices [155] which are very similar to the confining color flux tubes which are described by the EST. A very interesting laboratory to address this picture is the 3D LGT for which it can be shown, using a duality transformation, that confinement is indeed due to the condensation of monopoles [156]. The remarkable success of this approach led to conjecture that a similar mechanism could drive confinement also in non-Abelian Yang–Mills theories [105,106,107,108,109,110,111].The implicit assumption behind this scenario is that there should exist a duality transformation mapping gauge fields into strings. In the non-Abelian case, such gauge/string duality transformation is in general unknown (a notable exception, however, is given by the holographic correspondence, relating gauge theories and string theories defined in a higher-dimensional spacetime [157,158,159]), but in the 3D case Polyakov [160] (see also [153,154,161] for an alternative derivation) was able to give a heuristic proof of this mapping and proposed to describe the free energy of a large Wilson loop with a string action combining both the Nambu–Goto and the extrinsic curvature terms, the so called “rigid string” [79,80].It is by now clear that this approach leads to an EST different from the one discussed in this review [8]. The “rigid string”, dominated by the extrinsic curvature term, agrees with the expectation of the dual superconductor model while the one which we discussed in this review has a negligible extrisic curvature term and is dominated by the Nambu–Goto behaviour. The major difference between the two ESTs is in the shape and width of the flux tube [9]. Interestingly this difference is magnified exactly in the high temperature regime [9,64] which is the subject of this review. It would be interesting to pursue this study to better understand the role of the extrinsic curvature term in driving this difference and, more importantly, which one better describes the behaviour of the flux tube in non-abelian LGTs.As a final remark on this issue, let us stress that the rigid string shows a pretty different behaviour depending on the sign of the extrinsic curvature term. An EST with negative extrinsic curvature was proposed more than twenty years ago in [162,163,164] and was subsequently thoroughly studied in [153,154,165,166,167,168]. Despite the apparent instability due to the negative sign of the curvature term, it can be shown that the string is stabilized by higher order terms in the derivative expansion [165] (for a review, see for instance [153]). In particular, as far as the topic of this review is concerned, the high temperature behaviour of the model was studied in detail in [166,167] and, also in this case, it would be very interesting to test these prediction with high precision Monte Carlo data for non-abelian LGTs.
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Useful Formulae
References
- Nambu, Y. Strings, Monopoles and Gauge Fields. Phys. Rev. 1974, D10, 4262. [Google Scholar] [CrossRef]
- Goto, T. Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theor. Phys. 1971, 46, 1560. [Google Scholar] [CrossRef] [Green Version]
- Luscher, M. Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories. Nucl. Phys. 1981, B180, 317. [Google Scholar] [CrossRef]
- Luscher, M.; Symanzik, K.; Weisz, P. Anomalies of the Free Loop Wave Equation in the WKB Approximation. Nucl. Phys. 1980, B173, 365. [Google Scholar] [CrossRef]
- Polchinski, J.; Strominger, A. Effective string theory. Phys. Rev. Lett. 1991, 67, 1681. [Google Scholar] [CrossRef]
- Isgur, N.; Paton, J.E. A Flux Tube Model for Hadrons in QCD. Phys. Rev. D 1985, 31, 2910. [Google Scholar] [CrossRef]
- Olesen, P. Strings, Tachyons and Deconfinement. Phys. Lett. 1985, B160, 408. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Panero, M.; Pellegrini, R.; Vadacchino, D. A different kind of string. J. High Energy Phys. 2015, 1501, 105. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Panero, M.; Vadacchino, D. Width of the flux tube in compact U(1) gauge theory in three dimensions. J. High Energy Phys. 2016, 1602, 180. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S. QCD forces and heavy quark bound states. Phys. Rept. 2001, 343, 1. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Komargodski, Z. The Effective Theory of Long Strings. J. High Energy Phys. 2013, 1305, 118. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B.; Meineri, M. Effective string description of confining flux tubes. Int. J. Mod. Phys. 2016, A31, 1643001. [Google Scholar] [CrossRef] [Green Version]
- Svetitsky, B.; Yaffe, L.G. Critical Behavior at Finite Temperature Confinement Transitions. Nucl. Phys. 1982, B210, 423. [Google Scholar] [CrossRef]
- Montvay, I.; Munster, G. Quantum Fields on a Lattice, Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1997; Volume 3. [Google Scholar]
- Kaczmarek, O.; Karsch, F.; Laermann, E.; Lutgemeier, M. Heavy quark potentials in quenched QCD at high temperature. Phys. Rev. D 2000, 62, 034021. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, N.; Bicudo, P. Lattice QCD computation of the SU(3) String Tension critical curve. Phys. Rev. D 2012, 85, 077501. [Google Scholar] [CrossRef] [Green Version]
- Hasenfratz, A.; Hasenfratz, E.; Hasenfratz, P. Generalized Roughening Transition and Its Effect on the String Tension. Nucl. Phys. B 1981, 180, 353. [Google Scholar] [CrossRef] [Green Version]
- Itzykson, C.; Peskin, M.E.; Zuber, J.-B. Roughening of Wilson’s Surface. Phys. Lett. B 1980, 95, 259. [Google Scholar] [CrossRef]
- Luscher, M.; Munster, G.; Weisz, P. How Thick Are Chromoelectric Flux Tubes? Nucl. Phys. 1981, B180, 1. [Google Scholar] [CrossRef]
- Dietz, K.; Filk, T. On the renormalization of string functionals. Phys. Rev. 1983, D27, 2944. [Google Scholar] [CrossRef]
- Alvarez, O. The Static Potential in String Models. Phys. Rev. D 1981, 24, 440. [Google Scholar] [CrossRef]
- Arvis, J. The Exact qq¯ Potential in Nambu String Theory. Phys. Lett. 1983, B127, 106. [Google Scholar] [CrossRef]
- Hasenbusch, M.; Pinn, K. Surface tension, surface stiffness, and surface width of the three-dimensional Ising model on a cubic lattice. Physica A 1993, 192, 342. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Fiore, R.; Gliozzi, F.; Hasenbusch, M.; Provero, P. String effects in the Wilson loop: A High precision numerical test. Nucl. Phys. 1997, B486, 245. [Google Scholar] [CrossRef] [Green Version]
- Ambjorn, J.; Olesen, P.; Peterson, C. Observation of a String in Three-dimensional SU(2) Lattice Gauge Theory. Phys. Lett. B 1984, 142, 410. [Google Scholar] [CrossRef]
- Ambjorn, J.; Olesen, P.; Peterson, C. Three-dimensional Lattice Gauge Theory and Strings. Nucl. Phys. B 1984, 244, 262. [Google Scholar] [CrossRef]
- Necco, S.; Sommer, R. The N(f) = 0 heavy quark potential from short to intermediate distances. Nucl. Phys. 2002, B622, 328. [Google Scholar] [CrossRef] [Green Version]
- Juge, K.J.; Kuti, J.; Morningstar, C. Fine structure of the QCD string spectrum. Phys. Rev. Lett. 2003, 90, 161601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucini, B.; Teper, M. Confining strings in SU(N) gauge theories. Phys. Rev. 2001, D64, 105019. [Google Scholar]
- Luscher, M.; Weisz, P. Quark confinement and the bosonic string. J. High Energy Phys. 2002, 0207, 049. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Fiore, R.; Gliozzi, F.; Hasenbusch, M.; Pinn, K. Rough interfaces beyond the Gaussian approximation. Nucl. Phys. 1994, B432, 590. [Google Scholar] [CrossRef] [Green Version]
- Lucini, B.; Teper, M. SU(N) gauge theories in (2 + 1)-dimensions: Further results. Phys. Rev. D 2002, 66, 097502. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Pepe, M.; Rago, A. Static quark potential and effective string corrections in the (2 + 1)-d SU(2) Yang–Mills theory. J. High Energy Phys. 2004, 10, 005. [Google Scholar] [CrossRef]
- Caselle, M.; Hasenbusch, M.; Panero, M. Comparing the Nambu–Goto string with LGT results. J. High Energy Phys. 2005, 3, 026. [Google Scholar] [CrossRef]
- Bringoltz, B.; Teper, M. A Precise calculation of the fundamental string tension in SU(N) gauge theories in 2 + 1 dimensions. Phys. Lett. 2007, B645, 383. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Hasenbusch, M.; Panero, M. High precision Monte Carlo simulations of interfaces in the three-dimensional ising model: A Comparison with the Nambu–Goto effective string model. J. High Energy Phys. 2006, 0603, 084. [Google Scholar] [CrossRef] [Green Version]
- Dass, N.D.H.; Majumdar, P. String-like behaviour of 4-D SU(3) Yang–Mills flux tubes. J. High Energy Phys. 2006, 10, 020. [Google Scholar] [CrossRef]
- Bringoltz, B.; Teper, M. Closed k-strings in SU(N) gauge theories: 2 + 1 dimensions. Phys. Lett. B 2008, 663, 429. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Bringoltz, B.; Teper, M. Closed flux tubes and their string description in D = 2 + 1 SU(N) gauge theories. J. High Energy Phys. 2011, 1105, 042. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Bringoltz, B.; Teper, M. Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories. J. High Energy Phys. 2011, 1102, 030. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Zago, M. A new approach to the study of effective string corrections in LGTs. Eur. Phys. J. 2011, C71, 1658. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M.; Pellegrini, R. New numerical results and novel effective string predictions for Wilson loops. J. High Energy Phys. 2012, 1, 104. [Google Scholar] [CrossRef] [Green Version]
- Mykkanen, A. The static quark potential from a multilevel algorithm for the improved gauge action. J. High Energy Phys. 2012, 12, 069. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Teper, M. Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N) gauge theories. J. High Energy Phys. 2013, 1306, 053. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Costagliola, G.; Nada, A.; Panero, M.; Toniato, A. Jarzynski’s theorem for lattice gauge theory. Phys. Rev. 2016, D94, 034503. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Teper, M. Closed flux tubes in D = 2 + 1 SU(N ) gauge theories: Dynamics and effective string description. J. High Energy Phys. 2016, 10, 093. [Google Scholar] [CrossRef] [Green Version]
- Dubovsky, S.; Flauger, R.; Gorbenko, V. Effective String Theory Revisited. J. High Energy Phys. 2012, 1209, 044. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Fioravanti, D.; Gliozzi, F.; Tateo, R. Quantisation of the effective string with TBA. J. High Energy Phys. 2013, 7, 071. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Datta, S.; Giveon, A.; Jiang, Y.; Kutasov, D. Modular invariance and uniqueness of TT¯ deformed CFT. J. High Energy Phys. 2019, 1, 086. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Jiang, Y. TT¯ deformed partition functions. J. High Energy Phys. 2018, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Luscher, M.; Weisz, P. String excitation energies in SU(N) gauge theories beyond the free-string approximation. J. High Energy Phys. 2004, 7, 014. [Google Scholar] [CrossRef] [Green Version]
- Billo, M.; Caselle, M. Polyakov loop correlators from D0-brane interactions in bosonic string theory. J. High Energy Phys. 2005, 507, 038. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M.; Ferro, L. The Partition function of interfaces from the Nambu–Goto effective string theory. J. High Energy Phys. 2006, 0602, 070. [Google Scholar] [CrossRef] [Green Version]
- Olesen, P. On the Exponentially Increasing Level Density in String Models and the Tachyon Singularity. Nucl. Phys. B 1986, 267, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Pisarski, R.D.; Alvarez, O. Strings at Finite Temperature and Deconfinement. Phys. Rev. D 1982, 26, 3735. [Google Scholar] [CrossRef]
- Komargodski, Z.; Simmons-Duffin, D. The Random-Bond Ising Model in 2.01 and 3 Dimensions. J. Phys. 2017, A50, 154001. [Google Scholar] [CrossRef]
- Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A. Precision Islands in the Ising and O(N) Models. J. High Energy Phys. 2016, 8, 036. [Google Scholar] [CrossRef] [Green Version]
- Lucini, B.; Teper, M.; Wenger, U. The High temperature phase transition in SU(N) gauge theories. J. High Energy Phys. 2004, 401, 061. [Google Scholar] [CrossRef]
- Lucini, B.; Teper, M.; Wenger, U. The Deconfinement transition in SU(N) gauge theories. Phys. Lett. B 2002, 545, 197. [Google Scholar] [CrossRef] [Green Version]
- Lucini, B.; Teper, M.; Wenger, U. Properties of the deconfining phase transition in SU(N) gauge theories. J. High Energy Phys. 2005, 2, 033. [Google Scholar] [CrossRef] [Green Version]
- Liddle, J.; Tepe, M. The Deconfining phase transition in D = 2 + 1 SU(N) gauge theories. arXiv 2008, arXiv:0803.2128. [Google Scholar]
- Lau, R.; Teper, M. The deconfining phase transition of SO(N) gauge theories in 2 + 1 dimensions. J. High Energy Phys. 2016, 3, 072. [Google Scholar] [CrossRef] [Green Version]
- Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A. Deconfinement and universality in the 3D U(1) lattice gauge theory at finite temperature: Study in the dual formulation. J. High Energy Phys. 2015, 9, 062. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Nada, A.; Panero, M.; Vadacchino, D. Conformal field theory and the hot phase of three-dimensional U(1) gauge theory. J. High Energy Phys. 2019, 5, 068. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Karzbrun, E. On the effective action of confining strings. J. High Energy Phys. 2009, 6, 012. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.B. Poincare invariance in effective string theories. J. High Energy Phys. 2006, 5, 066. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Dodelson, M. Effective String Theory and Nonlinear Lorentz Invariance. J. High Energy Phys. 2012, 1202, 008. [Google Scholar] [CrossRef] [Green Version]
- Gliozzi, F. Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios. Phys. Rev. D 2011, 84, 027702. [Google Scholar] [CrossRef] [Green Version]
- Gliozzi, F.; Meineri, M. Lorentz completion of effective string (and p-brane) action. J. High Energy Phys. 2012, 1208, 056. [Google Scholar] [CrossRef] [Green Version]
- Meineri, M. Lorentz completion of effective string action. arXiv 2013, arXiv:1301.3437. [Google Scholar]
- Drummond, J.M. Universal subleading spectrum of effective string theory. arXiv 2004, arXiv:0411017. [Google Scholar]
- Dass, N.D.H.; Matlock, P. Universality of correction to Luescher term in Polchinski-Strominger effective string theories. arXiv 2006, arXiv:0606265. [Google Scholar]
- Drummond, J.M. Reply to hep-th/0606265. arXiv 2006, arXiv:0608109. [Google Scholar]
- Dass, N.D.H.; Matlock, P. Our response to the response hep-th/0608109 by Drummond. arXiv 2006, arXiv:0611215. [Google Scholar]
- Dass, N.D.H.; Matlock, P. Covariant Calculus for Effective String Theories. Indian J. Phys. 2014, 88, 965. [Google Scholar] [CrossRef]
- Dass, N.D.H.; Matlock, P.; Bharadwa, Y. Spectrum to all orders of Polchinski-Strominger Effective String Theory of Polyakov-Liouville Type. arXiv 2009, arXiv:0910.5615. [Google Scholar]
- Dass, N.D.H. All Conformal Effective String Theories are Isospectral to Nambu–Goto Theory. arXiv 2009, arXiv:0911.3236. [Google Scholar]
- Aharony, O.; Field, M. On the effective theory of long open strings. J. High Energy Phys. 2011, 1101, 065. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.M. Fine Structure of Strings. Nucl. Phys. B 1986, 268, 406. [Google Scholar] [CrossRef]
- Kleinert, H. The Membrane Properties of Condensing Strings. Phys. Lett. B 1986, 174, 335. [Google Scholar] [CrossRef]
- Miró, J.E.; Guerrieri, A.L.; Hebbar, A.; Penedones, J.a.; Vieira, P. Flux Tube S-matrix Bootstrap. Phys. Rev. Lett. 2019, 123, 221602. [Google Scholar] [CrossRef] [Green Version]
- Billo, M.; Caselle, M.; Gliozzi, F.; Meineri, M.; Pellegrini, R. The Lorentz-invariant boundary action of the confining string and its universal contribution to the inter-quark potential. J. High Energy Phys. 2012, 5, 130. [Google Scholar] [CrossRef] [Green Version]
- Brand, B.B. Probing boundary-corrections to Nambu–Goto open string energy levels in 3D SU(2) gauge theory. J. High Energy Phys. 2011, 2, 040. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B. Spectrum of the open QCD flux tube and its effective string description I: 3D static potential in SU(N = 2, 3). J. High Energy Phys. 2017, 7, 008. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.B. Spectrum of the open QCD flux tube and its effective string description. arXiv 2018, arXiv:1811.11779. [Google Scholar]
- Brandt, B.B. Revisiting the flux tube spectrum of 3D SU(2) lattice gauge theory. arXiv 2021, arXiv:2102.06413. [Google Scholar]
- Bakry, A.S.; Deliyergiyev, M.A.; Galal, A.A.; Khalaf, A.M.; William, M.K. Quantum delocalization of strings with boundary action in Yang–Mills theory. arXiv 2020, arXiv:2001.02392. [Google Scholar]
- Bakry, A.S.; Deliyergiyev, M.A.; Galal, A.A.; Williams, M.K. Boundary action and profile of effective bosonic strings. arXiv 2019, arXiv:1912.13381. [Google Scholar]
- Caselle, M.; Feo, A.; Panero, M.; Pellegrini, R. Universal signatures of the effective string in finite temperature lattice gauge theories. J. High Energy Phys. 2011, 1104, 020. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Bringoltz, B.; Teper, M. The closed string spectrum of SU(N) gauge theories in 2+1 dimensions. Phys. Lett. 2007, B656, 132. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Hasenbusch, M.; Panero, M. String effects in the 3-d gauge Ising model. J. High Energy Phys. 2003, 301, 057. [Google Scholar] [CrossRef] [Green Version]
- Bonati, C. Finite temperature effective string corrections in (3+1)D SU(2) lattice gauge theory. Phys. Lett. B 2011, 703, 376. [Google Scholar] [CrossRef] [Green Version]
- Bakry, A.S.; Deliyergiyev, M.A.; Galal, A.A.; Khalil, M.N. On QCD strings beyond non-interacting model. arXiv 2020, arXiv:2001.04203. [Google Scholar]
- Caselle, M.; Gliozzi, F.; Magnea, U.; Vinti, S. Width of long color flux tubes in lattice gauge systems. Nucl. Phys. 1996, B460, 397. [Google Scholar] [CrossRef] [Green Version]
- Zach, M.; Faber, M.; Skala, P. Investigating confinement in dually transformed U(1) lattice gauge theory. Phys. Rev. 1998, D57, 123. [Google Scholar] [CrossRef] [Green Version]
- Koma, Y.; Koma, M.; Majumdar, P. Static potential, force, and flux tube profile in 4-D compact U(1) lattice gauge theory with the multilevel algorithm. Nucl. Phys. 2004, B692, 209. [Google Scholar] [CrossRef] [Green Version]
- Panero, M. A Numerical study of confinement in compact QED. J. High Energy Phys. 2005, 5, 066. [Google Scholar] [CrossRef]
- Giudice, P.; Gliozzi, F.; Lottini, S. Quantum broadening of k-strings in gauge theories. J. High Energy Phys. 2007, 1, 084. [Google Scholar] [CrossRef]
- Amado, A.; Cardoso, N.; Bicudo, P. Flux tube widening in compact U (1) lattice gauge theory computed at T<Tc with the multilevel method and GPUs. arXiv 2013, arXiv:1309.3859. [Google Scholar]
- Amado, A.; Cardoso, N.; Cardoso, M.; Bicudo, P. Study of compact U(1) flux tubes in 3 + 1 dimensions in lattice gauge theory using GPU’s. Acta Phys. Polon. Supp. 2012, 5, 1129. [Google Scholar] [CrossRef]
- Gliozzi, F.; Pepe, M.; Wiese, U.J. The Width of the Confining String in Yang–Mills Theory. Phys. Rev. Lett. 2010, 104, 232001. [Google Scholar] [CrossRef] [Green Version]
- Bakry, A.S.; Leinweber, D.B.; Moran, P.J.; Sternbeck, A.; Williams, A.G. String effects and the distribution of the glue in mesons at finite temperature. Phys. Rev. D 2010, 82, 094503. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, N.; Cardoso, M.; Bicudo, P. Inside the SU(3) quark-antiquark QCD flux tube: Screening versus quantum widening. Phys. Rev. 2013, D88, 054504. [Google Scholar] [CrossRef] [Green Version]
- Bicudo, P.; Cardoso, N.; Cardoso, M. Pure gauge QCD flux tubes and their widths at finite temperature. Nucl. Phys. B 2019, 940, 88. [Google Scholar] [CrossRef]
- Cardaci, M.S.; Cea, P.; Cosmai, L.; Falcone, R.; Papa, A. Chromoelectric flux tubes in QCD. Phys. Rev. 2011, D83, 014502. [Google Scholar] [CrossRef] [Green Version]
- Cea, P.; Cosmai, L.; Papa, A. Chromoelectric flux tubes and coherence length in QCD. Phys. Rev. 2012, D86, 054501. [Google Scholar] [CrossRef] [Green Version]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes in the SU(3) vacuum: London penetration depth and coherence length. Phys. Rev. 2014, D89, 094505. [Google Scholar] [CrossRef] [Green Version]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes at finite temperature. J. High Energy Phys. 2016, 6, 033. [Google Scholar] [CrossRef] [Green Version]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes in the QCD vacuum. Phys. Rev. D 2017, 95, 114511. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.; Cea, P.; Chelnokov, V.; Cosmai, L.; Cuteri, F.; Papa, A. Isolating the confining color field in the SU(3) flux tube. Eur. Phys. J. C 2019, 79, 478. [Google Scholar] [CrossRef]
- Baker, M.; Cea, P.; Chelnokov, V.; Cosmai, L.; Cuteri, F.; Papa, A. The confining color field in SU(3) gauge theory. Eur. Phys. J. C 2020, 80, 514. [Google Scholar] [CrossRef]
- Allais, A.; Caselle, M. On the linear increase of the flux tube thickness near the deconfinement transition. J. High Energy Phys. 2009, 901, 073. [Google Scholar] [CrossRef] [Green Version]
- Gliozzi, F.; Pepe, M.; Wiese, U.J. The Width of the Color Flux Tube at 2-Loop Order. J. High Energy Phys. 2010, 11, 053. [Google Scholar] [CrossRef] [Green Version]
- Gliozzi, F.; Pepe, M.; Wiese, U.J. Linear Broadening of the Confining String in Yang–Mills Theory at Low Temperature. J. High Energy Phys. 2011, 1, 057. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Grinza, P.; Magnoli, N. Study of the flux tube thickness in 3-D LGT’s by means of 2-D spin models. J. Stat. Mech. 2006, 0611, P11003. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M. Flux tube delocalization at the deconfinement point. J. High Energy Phys. 2010, 8, 063. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Grinza, P. On the intrinsic width of the chromoelectric flux tube in finite temperature LGTs. J. High Energy Phys. 2012, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Yurov, V.P.; Zamolodchikov, A.B. Correlation functions of integrable 2-D models of relativistic field theory. Ising model. Int. J. Mod. Phys. A 1991, 6, 3419. [Google Scholar] [CrossRef]
- Hagedorn, R. Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. Suppl. 1965, 3, 147. [Google Scholar]
- Meyer, H.B. High-Precision Thermodynamics and Hagedorn Density of States. Phys. Rev. D 2009, 80, 051502. [Google Scholar] [CrossRef]
- Caselle, M.; Castagnini, L.; Feo, A.; Gliozzi, F.; Panero, M. Thermodynamics of SU(N) Yang–Mills theories in 2 + 1 dimensions I—The confining phase. J. High Energy Phys. 2011, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Nada, A.; Panero, M. Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang–Mills theories. J. High Energy Phys. 2015, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Alba, P.; Alberico, W.M.; Nada, A.; Panero, M.; Stöcker, H. Excluded-volume effects for a hadron gas in Yang–Mills theory. Phys. Rev. D 2017, 95, 094511. [Google Scholar] [CrossRef] [Green Version]
- Karkkainen, L.; Lacock, P.; Miller, D.E.; Petersson, B.; Reisz, T. Space-like Wilson loops at finite temperature. Phys. Lett. 1993, B312, 173. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Fingberg, J.; Heller, U.M.; Karsch, F.; Schilling, K. The Spatial string tension in the deconfined phase of the (3 + 1)-dimensional SU(2) gauge theory. Phys. Rev. Lett. 1993, 71, 3059. [Google Scholar] [CrossRef] [Green Version]
- Karsch, F.; Laermann, E.; Lutgemeier, M. Three-dimensional SU(3) gauge theory and the spatial string tension of the (3 + 1)-dimensional finite temperature SU(3) gauge theory. Phys. Lett. 1995, B346, 94. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Fiore, R.; Gliozzi, F.; Guaita, P.; Vinti, S. On the behavior of spatial Wilson loops in the high temperature phase of LGT. Nucl. Phys. 1994, B422, 397. [Google Scholar] [CrossRef] [Green Version]
- Koch, V. On the temperature dependence of correlation functions in the space-like direction in hot QCD. Phys. Rev. 1994, D49, 6063. [Google Scholar]
- Ejiri, S. Monopoles and spatial string tension in the high temperature phase of SU(2) QCD. Phys. Lett. 1996, B376, 163. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, T.; Ishigur, K. Abelian spatial string tension in finite temperature SU(2) gauge theory. Int. J. Mod. Phys. 2016, A31, 1650149. [Google Scholar] [CrossRef] [Green Version]
- Schroder, Y.; Laine, M. Spatial string tension revisited. PoS 2006, LAT2005, 180. [Google Scholar]
- RBC-Bielefeld Collaboration. The Spatial string tension and dimensional reduction in QCD. PoS 2007, LATTICE2007, 204. [Google Scholar]
- Cheng, S.M.; Datta, J.; van der Heide, K.; Huebner, F.; Karsch, O.; Kaczmarek, E.; Laermann, J.; Liddle, R.; Mawhinney, D.; Miao, C.; et al. The Spatial String Tension and Dimensional Reduction in QCD. Phys. Rev. 2008, D78, 034506. [Google Scholar] [CrossRef]
- WHOT-QCD Collaboration. Heavy-quark free energy, debye mass, and spatial string tension at finite temperature in two flavor lattice QCD with Wilson quark action. Phys. Rev. 2007, D75, 074501. [Google Scholar]
- Alanen, J.; Kajantie, K.; Suur-Uski, V. Spatial string tension of finite temperature QCD matter in gauge/gravity duality. Phys. Rev. 2009, D80, 075017. [Google Scholar] [CrossRef]
- Andreev, O.; Zakharov, V.I. The Spatial String Tension, Thermal Phase Transition, and AdS/QCD. Phys. Lett. 2007, B645, 437. [Google Scholar] [CrossRef] [Green Version]
- Andreev, O. The Spatial String Tension in the Deconfined Phase of SU(N) Gauge Theory and Gauge/String Duality. Phys. Lett. 2008, B659, 416. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.B. Vortices on the worldsheet of the QCD string. Nucl. Phys. 2005, B724, 432. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Gliozzi, F.; Vinti, S. On the relation between the width of the flux tube and T(c)**1 in lattice gauge theories. Nucl. Phys. Proc. Suppl. 1994, 34, 263. [Google Scholar] [CrossRef] [Green Version]
- Beratto, E.; Billò, M.; Caselle, M. TT¯ deformation of the compactified boson and its interpretation in lattice gauge theory. Phys. Rev. D 2020, 102, 014504. [Google Scholar] [CrossRef]
- Munster, G. Interface Tension in Three-dimensional Systems From Field Theory. Nucl. Phys. 1990, B340, 559. [Google Scholar] [CrossRef]
- Caselle, M.; Gliozzi, F.; Vinti, S. Finite size effects in the interface of 3-D Ising model. Phys. Lett. 1993, B302, 74. [Google Scholar] [CrossRef] [Green Version]
- Klessinger, S.; Munster, G. Numerical investigation of the interface tension in the three-dimensional Ising model. Nucl. Phys. 1992, B386, 701. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, P.; Munster, G. The Interface tension of the three-dimensional Ising model in two loop order. Phys. Lett. 1998, A238, 265. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Munster, G. Profile and width of rough interfaces. J. Statist. Phys. 2005, 118, 669. [Google Scholar] [CrossRef] [Green Version]
- Caselle, M.; Hasenbusch, M.; Panero, M. The Interface free energy: Comparison of accurate Monte Carlo results for the 3D Ising model with effective interface models. J. High Energy Phys. 2007, 709, 117. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M.; Ferro, L. Universal behaviour of interfaces in 2d and dimensional reduction of Nambu–Goto strings. Nucl. Phys. 2008, B795, 623. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.B.; Olesen, P. Vortex Line Models for Dual Strings. Nucl. Phys. 1973, B61, 45. [Google Scholar] [CrossRef]
- Hooft, G. Magnetic Monopoles in Unified Gauge Theories. Nucl. Phys. B 1974, 79, 276. [Google Scholar] [CrossRef] [Green Version]
- Mandelstam, S. Vortices and Quark Confinement in Nonabelian Gauge Theories. Phys.Rept. 1976, 23, 245. [Google Scholar] [CrossRef]
- Polyakov, A.M. Particle Spectrum in the Quantum Field Theory. J. Exp. Theor. Phys. Lett. 1974, 20, 194. [Google Scholar]
- Ripka, G. Dual superconductor models of color confinement. arXiv 2004, arXiv:0310102639. [Google Scholar]
- Antonov, D.; Diamantini, M.C. 3D Georgi-Glashow model and confining strings at zero and finite temperatures. In From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan. arXiv 2004, arXiv:0406272. [Google Scholar]
- Antonov, D. Monopole-Based Scenarios of Confinement and Deconfinement in 3D and 4D. Universe 2017, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Abrikosov, A.A. On the Magnetic properties of superconductors of the second group. Sov. Phys. J. Exp. Theor. Phys. 1957, 5, 1174. [Google Scholar]
- Polyakov, A.M. Quark Confinement and Topology of Gauge Groups. Nucl. Phys. 1977, B120, 429. [Google Scholar] [CrossRef]
- Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231. [Google Scholar] [CrossRef]
- Gubser, S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. 1998, B428, 105. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef]
- Polyakov, A.M. Confining strings. Nucl. Phys. B 1997, 486, 23. [Google Scholar] [CrossRef] [Green Version]
- Antonov, D. Various properties of compact QED and confining strings. Phys. Lett. 1998, B428, 346. [Google Scholar] [CrossRef] [Green Version]
- Orland, P. Extrinsic curvature dependence of Nielsen-Olesen strings. Nucl. Phys. B 1994, 428, 221. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Yahikozawa, S. ’Topological’ formulation of effective vortex strings. Nucl. Phys. B 1995, 436, 100. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, H.; Chervyakov, A.M. Evidence for negative stiffness of QCD flux tubes in the large-N limit of SU(N). Phys. Lett. B 1996, 381, 286. [Google Scholar] [CrossRef]
- Diamantini, M.C.; Kleinert, H.; Trugenberger, C.A. Strings with negative stiffness and hyperfine structure. Phys. Rev. Lett. 1999, 82, 267. [Google Scholar] [CrossRef] [Green Version]
- Diamantini, M.C.; Trugenberger, C.A. QCD like behaviour of high temperature confining strings. Phys. Rev. Lett. 2002, 88, 251601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamantini, M.C.; Trugenberger, C.A. Confining strings at high temperature. J. High Energy Phys. 2002, 4, 032. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, Y.; Pisarski, R.D. Zero Point Energy of Renormalized Wilson Loops. Phys. Rev. D 2009, 80, 074504. [Google Scholar] [CrossRef] [Green Version]
R | Q | R | Q | R | Q |
---|---|---|---|---|---|
2 | 0.037433(46) | 8 | 0.02232(11) | 14 | 0.01971(16) |
3 | 0.030958(56) | 9 | 0.02170(12) | 15 | 0.01949(18) |
4 | 0.027600(64) | 10 | 0.02117(12) | 16 | 0.01926(19) |
5 | 0.025553(72) | 11 | 0.02072(13) | 17 | 0.01906(20) |
6 | 0.024154(84) | 12 | 0.02034(15) | 18 | 0.01892(22) |
7 | 0.023118(94) | 13 | 0.02000(15) | 19 | 0.01876(24) |
Gauge Group | s | b | c | |||||
---|---|---|---|---|---|---|---|---|
8 | 0.0668(58) | 0.0625 | ||||||
8 | 0.0612(74) | 0.0625 | ||||||
8 | 0.0634(70) | 0.0625 | ||||||
12 | 0.0414(8) | 0.04167 | ||||||
9 | 0.0522(40) | 0.0556 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caselle, M. Effective String Description of the Confining Flux Tube at Finite Temperature. Universe 2021, 7, 170. https://doi.org/10.3390/universe7060170
Caselle M. Effective String Description of the Confining Flux Tube at Finite Temperature. Universe. 2021; 7(6):170. https://doi.org/10.3390/universe7060170
Chicago/Turabian StyleCaselle, Michele. 2021. "Effective String Description of the Confining Flux Tube at Finite Temperature" Universe 7, no. 6: 170. https://doi.org/10.3390/universe7060170
APA StyleCaselle, M. (2021). Effective String Description of the Confining Flux Tube at Finite Temperature. Universe, 7(6), 170. https://doi.org/10.3390/universe7060170